Advertisement

Biotechnology Tools for Conservation of the Biodiversity of European and Mediterranean Abies Species

  • Jana KrajňákováEmail author
  • Dušan Gömöry
  • Hely Häggman
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 4)

Abstract

The review underlines the importance of European and Mediterranean firs (Abies sp.) in European forests, their geographical distribution, ecological and economical values. The present status of endangerment is given as well as the importance of genetic conservation of these species is illustrated by results from population genetics studies. Moreover, the current status of in situ and ex situ conservation methods is discussed and a special attention is paid to the role of biotechnological methods (in vitro regeneration system and cryopreservation) in their ex situ conservation. Among in vitro methods till now, only somatic embryogenesis proved to be promising and five species (A. alba, A. cephalonica, A. cilicica, A. nordmanniana, A. numidica and several hybrids) were regenerated. Based on the success of regeneration method, the slow cooling cryopreservation protocols for three Abies species (A. alba, A. cephalonica, A. nordmanianna) and their hybrids were developed. The biotechnology approaches have confirmed their place in the toolbox of conservation methods of firs. Transfer of the experience gained in widespread species and development of reliable procedures for somatic embryogenesis and cryopreservation for the endemics remain tasks for the future.

Keywords

Gene pools Ex situ conservation Cryopreservation Somatic embryogenesis Genetic fidelity Greek fir Silver fir 

Notes

Acknowledgment

Authors thank the EUFORGEN as the source of information for downloading the distribution maps from http://www.euforgen.org/distribution_maps.html.

References

  1. Ahuja MR (1986) Storage of forest tree germplasm in liquid nitrogen (– 196 °C). Silvae Genet 35:249–251Google Scholar
  2. Alizoti PG, Fady B, Prada MA, Vendramin GG (2011) EUFORGEN technical guidelines for genetic conservation and use of Mediterranean firs (Abies spp.). Bioversity International, Rome, p 6Google Scholar
  3. Arista M (1995) The structure and dynamics of an Abies pinsapo forest in southern Spain. Forest Ecol Manag 74:81–89Google Scholar
  4. Aronen TS, Krajňáková J, Häggman HM, Ryynanen LA (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172Google Scholar
  5. Awad L, Fady B, Khater C, Roig A, Cheddadi R (2014) Genetic structure and diversity of the endangered fir tree of Lebanon (Abies cilicica Carr.): Implications for conservation. Plos One 9:e90086Google Scholar
  6. Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory practice. Crit Rev Plant Sci 27:141–219Google Scholar
  7. Bergmann F, Gregorius HR (1993) Ecogeographical distribution and thermostability of isocitrate dehydrogenase (Idh) alloenzymes in European silver fir (Abies alba). Biochem Syst Ecol 21(5):597–605Google Scholar
  8. Bettinger P, Clutter M, Siry J, Kane M, Pait J (2009) Broad implications of southern United States pine clonal forestry on planning and management of forests. Int Forest Rev 11:331–345Google Scholar
  9. Blakesley D, Pask N, Henshaw GG, Fay MF (1996) Biotechnology and the conservation of forest genetic resources: in vitro strategies and cryopreservation. Plant Growth Regul 20:11–16Google Scholar
  10. Blazich FA, Hinesley LE (1994) Propagation of Fraser fir. J Environ Horticult 12:112–117Google Scholar
  11. Bomal C, Tremblay FM (2000) Dried cryopreserved somatic embryos of two picea species provide suitable material for direct plantlet regeneration and germplasm storage. Ann Bot 86:177–183Google Scholar
  12. Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult 100:241–254Google Scholar
  13. Bonner FT (2008) Storage of seeds. The woody plant seed material. Agriculture handbook 727. USDA, Forest Service, Washington, DC, pp 85–96Google Scholar
  14. Bošeľa M, Petráš R, Sitková Z, Priwitzer T, Pajtík J, Hlavata H, Sedmák R, Tobin B (2014) Possible causes of the recent rapid increase in the radial increment of silver fir in the Western Carpathians. Environ Pollut 184:211–221PubMedGoogle Scholar
  15. Chalupa V (1991) Somatic embryogenesis and plant regeneration in European silver fir (Abies alba Mill.) and red oak (Quercus rubra L.). Commun Inst For 17:51–58Google Scholar
  16. Chmielarz P (2008) Kriogeniczne przechowywanie nasion jodły pospolitej (Abies alba Mill.). Cryopreservation of Abies alba Mill. seeds. In: Barzdajn W, Raj A (eds) Jodła pospolita w Karkonoskim Parku Narodowym. Karkonoski Park Narodowy, Jelenia Góra, pp 149–154Google Scholar
  17. Convention on Biological Diversity (2010) Plants 2020: supporting the implementation of the Global Strategy for Plant Conservation. http://www.plants2020.net/about-the-gspc/
  18. Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16Google Scholar
  19. Erdelský K, Barančok P (1986a) Cultivating embryos of the silver fir (Abies alba Mill.) in vitro. Acta FRN Univ Comen Physiol Plant XXIII:25–29Google Scholar
  20. Erdelský K, Barančok P (1986b) Growth induction of callus and organ cultures of the fir (Abies alba Mill.). Acta FRN Univ Comen Physiol Plant XXII:41–49Google Scholar
  21. Fady B, Conkle MT (1993) Allozyme variation and possible phylogenetic implications in Abies cephalonica Loudon and some related eastern Mediterranean firs. Silvae Genet 42:351–359Google Scholar
  22. Fady B, Arbez M, Marpeau A (1992) Geographic variability of terpene composition in Abies cephalonica Loudon and Abies species around the Aegean: hypotheses for their possible phylogeny from the Miocene. Trees 6:162–171Google Scholar
  23. Fady-Welterlen B (2005) Is there really more biodiversity in Mediterranean forest ecosystems? Taxon 54:905–910Google Scholar
  24. FAO (2013) Genebank standards for plant genetic resources for food and agriculture. FAO, RomeGoogle Scholar
  25. Forest Europe (2011) State of Europe’s forests 2011: status and trends in sustainable forest management in Europe. Forest Europe Liaison Unit, OsloGoogle Scholar
  26. Gajdošová A, Vooková B, Kormuťák A, Libiaková G, Doležel J (1995) Induction, protein-composition and DNA-ploidy level of embryogenic calli of silver fir and its hybrids. Biol Plantarum 37:169–176Google Scholar
  27. Gale S, John A, Harding K, Benson EE (2008) Developing cryopreservation for Picea sitchensis (Sitka spruce) somatic embryos: a comparison of vitrification protocols. Cryoletters 29:135–144PubMedGoogle Scholar
  28. Geburek T, Turok J (2005) Conservation and sustainable management of forest genetic resources in Europe—an introduction. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora, Rome, pp 3–10. ISBN 80-967088–3Google Scholar
  29. Geburek T, Robitschek K, Milasowszky N (2008) A tree of many faces: why are there different crown types in Norway spruce (Picea abies (L.) Karst.)? Flora 203:126–133Google Scholar
  30. Gömöry D, Paule L, Krajmerová D, Romšáková I, Longauer R (2012) Admixture of genetic lineages of different glacial origin: a case study of Abies alba Mill. in the Carpathians. Plant Syst Evol 298:703–712Google Scholar
  31. Grossnickle SC, Folk RS, Abrams SR, Dunstan DI, Rose PA (1996) Performance of interior spruce seedlings treated with abscisic acid analogs. Can J For Res 26:2061–2070Google Scholar
  32. Gupta PK, Durzan DJ, Finkle BJ (1987) Somatic polyembryogenesis in embryogenic cell masses of Picea abies (Norway spruce) and Pinus taeda (Loblolly pine) after thawing from liquid-nitrogen. Can J For Res 17:1130–1134Google Scholar
  33. Häggman HM, Aronen TS, Ryynanen LA (2000) Cryopreservation of embryogenic cultures of conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 6. Kluwer, Dordrecht, pp 707–728Google Scholar
  34. Häggman H, Rusanen M, Jokipii S (2008) Cryopreservation of in vitro tissues of deciduous forest trees. In: Re BM (ed) Plant cryopreservation. A practical guide. Springer, Dordrecht, pp 365–386Google Scholar
  35. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecology Letters 8:461–467Google Scholar
  36. Hansen JK, Larsen JB (2004) European silver fir (Abies alba Mill.) provenances from Calabria, southern Italy: 15-year results from Danish provenance field trials. Eur J For Res 123:127–138Google Scholar
  37. Hansen OK, Kjaer ED, Vendramin GG (2005) Chloroplast microsatellite variation in Abies nordmanniana and simulation of causes for low differentiation among populations. Tree Genet Genome 1(3):116–123Google Scholar
  38. Hazubska-Przybyl T, Chmielarz P, Michalak M, Bojarczuk K (2010) Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell Tissue Organ Cult 102:35–44Google Scholar
  39. Hazubska-Przybyl T, Chmielarz P, Michalak M, Dering M, Bojarczuk K (2013) Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. Plant Cell Tissue Organ Cult 113:303–313Google Scholar
  40. Holeksa J, Saniga M, Szwagrzyk J, Czerniak M, Staszynska K, Kapusta P (2009) A giant tree stand in the West Carpathians—an exception or a relic of formerly widespread mountain European forests? For Ecol Manage 257:1577–1585Google Scholar
  41. Hristoforoglu K, Schmidt J, Bolharnordenkampf H (1995) Development and germination of Abies alba somatic embryos. Plant Cell Tissue Organ Cult 40:277–283Google Scholar
  42. Johnson KH, Vogt KA, Clark HS, Schmitz OJ, Vogt, DJ (1996) Biodiversity and the productivity and stability of ecosystems. Trends Ecol Evol 11:372–377PubMedGoogle Scholar
  43. Kartha KK, Fowke LC, Leung NL, Caswell KL, Hakman I (1988) Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J Plant Physiol 132:529–539Google Scholar
  44. Kobliha J, Stejskal J, Lstibůrek M, Typta J, Tomášková I, Jakubův P (2013) Testing of hybrid progenies and various species of genus Abies for forestry, decorating horticulture and Christmas tree production. Acta Sci Pol Hortorum Cultus 12(4):85–94Google Scholar
  45. Kong LS, von Aderkas P (2011) A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell Tissue Organ Cult 106:115–125Google Scholar
  46. Konnert M, Bergmann F (1995) The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst Evol 196:19–30Google Scholar
  47. Konnert M, Fady B, Gömöry D, A’Hara S, Wolter F, Ducci F, Koskela J, Bozzano M, Maaten T, Kowalczyk J (2014) Use and transfer of forest reproductive material in Europe in the context of climate change. Biodiversity International, RomeGoogle Scholar
  48. Kormuťák A, Vooková B (2001) Early growth characteristics of some Abies hybrids. In: Müller-Starck G, Schubert R (eds) Genetic response of forest systems to changing environmental conditions. Forestry sciences. vol 70. Kluwer, Dordrecht, pp 331–338Google Scholar
  49. Koskela J, Lefèvre F, Schueler S, Kraigher H, Olrik DC, Hubert J, Longauer R, Bozzano M, Yrjänä L, Alizoti P, Rotach P, Vietto L, Bordacs S, Myking T, Eysteinsson T, Souvannavong O, Fady B, De Cuyper B, Heinze B, von Wuhlisch G, Ducousso A, Ditlevsen B (2013) Translating conservation genetics into management: pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biol Conserv 157:39–49Google Scholar
  50. Krajňáková J, Gömöry D, Häggman H (2008) Somatic embryogenesis in Greek fir. Can J For Res 38:760–769Google Scholar
  51. Krajňáková J, Häggman H, Gömöry D (2009) Effect of sucrose concentration, polyethylene glycol and activated charcoal on maturation and regeneration of Abies cephalonica somatic embryos. Plant Cell Tissue Organ Cult 96:251–262Google Scholar
  52. Krajňáková J, Sutela S, Aronen T, Gömöry D, Vianello A, Häggman H (2011a) Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity. Cryobiology 63:17–25Google Scholar
  53. Krajňáková J, Sutela S, Gömöry D, Vianello A, Häggman H (2011b) Bioenergetic parameters during cryopreservation of two Abies cephalonica embryogenic cell lines. Grapin A, Keller ERJ, Lynch PT, Panis B, Bahillo AR, Engelmann F (eds) Cryopreservation of crop species in Europe. Proceedings of the final meeting Agrocampus Ouest INHP, Angres, France, 8–11 Feb 2011, pp 44–47Google Scholar
  54. Krajňáková J, Bertolini A, Gömöry D, Vianello A, Häggman H (2013) Initiation, long-term cryopreservation, and recovery of Abies alba Mill. embryogenic cell lines. In Vitro Cell Dev Biol 49:560–571Google Scholar
  55. Kushnarenko SV, Romadanova NV, Reed BM (2009) Cold acclimation improves regrowth of cryopreserved apple shoot tips. CryoLetters 30:47–54PubMedGoogle Scholar
  56. Lambardi M, Ozudogru EI, Benelli C (2008) Cryopreservation of embryogenic cultures. In: Read BM (ed) Plant cryopreservation. A practical guide. Springer, Dordrecht, pp 177–210Google Scholar
  57. Larsen JB (1986) Das Tannensterben: Eine neue Hypothese zur Klärung des Hintergrundes dieser rätselhaften Komplexkrankheit der Weisstanne (Abies alba Mill.). Forstwiss Centralbl 105:381–396Google Scholar
  58. Larsen JB, Mekić F (1991) The geographic variation in European silver fir (Abies alba Mill.). Silvae Genet 40:188–198Google Scholar
  59. Lefèvre F, Koskela J, Hubert J, Kraigher H, Longauer R, Olrik DC, Schueler S, Bozzano M, Alizoti P, Bakys R, Baldwin C, Ballian D, Black-Samuelsson S, Bednárová D, Bordács S, Collin E, De Cuyper B, De Vries SMG, Eysteinsson T, Frýdl J, Haverkamp M, Ivanković M, Konrad H, Koziol C, Maaten T, Paino EN, Ozturk H, Pandeva ID, Parnuta G, Pilipović A, Postolache D, Ryan C, Steffenrem A, Varela MC, Vessella F, Volosyanchuk RT, Westergren M, Wolter F, Yrjänä L, Zarina I (2013) Dynamic conservation of forest genetic resources in 33 European countries. Conserv Biol 27:373–384PubMedGoogle Scholar
  60. Leibundgut H (1976) Die grössten Fichten und Tannen. Schweiz Zeit Forstwirtsch 127:427Google Scholar
  61. Li DZ, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14:614–621PubMedGoogle Scholar
  62. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Natl Acad Sci U S A 99:14590–14594PubMedPubMedCentralGoogle Scholar
  63. Liepelt S, Chedaddi R, de Beaulieu JL, Fady B, Gömöry D, Hussendörfer E, Konnert M, Litt T, Longauer R, Terhürne-Berson R, Ziegenhagen B (2009) Biogeographic history of Abies alba Mill.—a synthesis from paleobotanic and genetic data. Rev Palaeobot Palynol 153:139–149Google Scholar
  64. Longauer R, Gömöry D, Paule L, Karnosky DF, Maňkovská B, Müller-Starck G, Percy K, Szaro R (2001) Selection effects of air pollution to gene pools of Norway spruce, European silver fir and European beech. Environ Pollut 115(3):405–411.PubMedGoogle Scholar
  65. Martinetto E (2001) The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobot 41(2):299–319Google Scholar
  66. Mayer H (1984) Waldbau auf soziologisch-oekologischer Grundlage. Gustav Fischer, StuttgartGoogle Scholar
  67. Mayer H, Reimoser F, Kral F (1982) Ergebnisse des Internationalen Tannenherkunftsversuches Wien 1967–1978. Morphologie und Wuchsverhalten der Provenienzen. Centralbl Ges Forstwes 99:169–191Google Scholar
  68. Menzies MI, Aimers-Halliday J (2004) Propagation options for clonal forestry with conifers. In: Walter C, Carlson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Kerala, pp 255–274Google Scholar
  69. Misson JP, Druart P, Panis B, Watillon B (2006) Contribution to the study of the maintenance of somatic embryos of Abies nordmanniana Lk: culture media and cryopreservation method. Propag Ornam Plants 6:17–23Google Scholar
  70. Mosca E, Eckert AJ, Di Pierro EA, Rocchini D, La Porta N, Belletti P, Neale DB (2012a) The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Mol Ecol 21(22):5530–5545Google Scholar
  71. Mosca E, Eckert AJ, Liechty JD, Wegrzyn JL, La Porta N, Vendramin GG, Neale DB (2012b) Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests. Evol Appl 5(7):762–775Google Scholar
  72. Nawrot-Chorabik K (2008) Embryogenic callus induction and differentiation in silver fir (Abies alba Mill.) tissue cultures. Dendrobiology 59:31–40Google Scholar
  73. Nehra NS, Becwar MR, Rottmann WH, Pearson L, Chowdhury K, Chang SJ, Wilde HD, Kodrzycki RJ, Zhang CS, Gause KC, Parks DW, Hinchee MA (2005) Forest biotechnology: innovative methods, emerging opportunities. In Vitro Cell Dev Biol Plant 41:701–717Google Scholar
  74. Nellemann C, MacDevette M, Manders T, Eickhout B, Svihus B, Prins AG, Kaltenborn BP (eds) (2009) The environmental food crisis—the environment’s role in averting future food crises. A UNEP rapid response assessment. United Nations Environment Programme, GRID-Arendal. http://www.grida.no/files/publications/FoodCrisis_lores.pdf
  75. Nørgaard JV (1997) Somatic embryo maturation and plant regeneration in Abies nordmanniana Lk. Plant Sci 124:211–221Google Scholar
  76. Nørgaard JV, Krogstrup P (1995) Somatic embryogenesis in Abies spp. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Gymnosperms, vol 3. Kluwer, Dordrecht, pp 341–355Google Scholar
  77. Nørgaard JV, Baldursson S, Krogstrup P (1993) Genotypic differences in the ability of embryogenic Abies nordmanniana cultures to survive cryopreservation. Silvae Genetica 42:93–97Google Scholar
  78. Oldfield SF (2009) Botanical gardens and the conservation of tree species. Trends Plant Sci 114(11):581–583Google Scholar
  79. Ozturk M, Gucel S, Kucuk M, Sakcali S (2010) Forest diversity, climate change and forest fires in the Mediterranean region of Turkey. J Environ Biol 31:1–9PubMedGoogle Scholar
  80. Panetsos CR (1975) Monograph of Abies cephalonica LOUDON. Anali za Šumarstvo 7:1–22Google Scholar
  81. Parducci L, Szmidt AE, Madaghiele A, Andizei M, Vendramin GG (2001) Genetic variation at chloroplast microsatellites (cpSSRs) in Abies nebrodensis (Lojac.) Mattei and three neighboring Abies species. Theor Appl Genet 102:733–740Google Scholar
  82. Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656Google Scholar
  83. Park YS (2013) Conifer somatic embryogenesis and multi-varietal forestry. In: Fenning T (ed) Challenges and opportunities for the world’s forests in the 21st century. Forestry sciences, vol 81. Springer, Berlin, pp 425–441, ISBN 978-94-007–7075–1Google Scholar
  84. Pence VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol Plant 47:176–187Google Scholar
  85. Pence VC (2014) Tissue Cryopreservation for plant conservation: potential and challenges. Int J Plant Sci 175:40–45Google Scholar
  86. Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54:877–885Google Scholar
  87. Pijut PM, Lawson SS, Michler CH (2011) Biotechnological efforts for preserving and enhancing temperate hardwood tree biodiversity, health, and productivity. In Vitro Cell Dev Biol Plant 47:123–147Google Scholar
  88. Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326Google Scholar
  89. Roschanski AM, Fady B, Ziegenhagen B, Liepelt S (2013) Annotation and re-sequencing of genes from de novo transcriptome assembly of Abies alba (Pinaceae). Appl Plant Sci 1(1):1200179Google Scholar
  90. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33PubMedGoogle Scholar
  91. Salaj T, Matúšová R, Salaj J (2004) The effect of carbohydrates and polyethylene glycol on somatic embryo maturation in hybrid fir Abies alba × Abies numidica. Acta Biol Cracov Ser Bot 46:159–167Google Scholar
  92. Salaj T, Matušíková I, Panis B, Swennen R, Salaj J (2010) Recovery and characterisation of hybrid firs (Abies alba x A. cephalonica, Abies alba × A. numidica) embryogenic tissues after cryopreservation. Cryoletters 31:206–217PubMedGoogle Scholar
  93. Salaj T, Salaj J (2003) Somatic embryo formation on mature Abies alba × Abies cephalonica zygotic embryo explants. Biol Plantarum 47:7–11Google Scholar
  94. Salajová T, Salaj J (2001) Somatic embryogenesis and plantlet regeneration from cotyledon explants isolated from emblings and seedlings of hybrid firs. J Plant Physiol 158:747–755Google Scholar
  95. Salajová T, Jásik J, Kormuťák A, Salaj J, Hakman I (1996) Embryogenic culture initiation and somatic embryo development in hybrid firs (Abies alba × Abies cephalonica, and Abies alba × Abies numidica). Plant Cell Rep 15:527–530PubMedGoogle Scholar
  96. Scaltsoyiannes A, Tsaktsira M, Drouzas A (1999) Allozyme differentiation in the Mediterranean firs (Abies, Pinaceae). A first comparative study with phylogenetic implications. Plant Syst Evol 216:289–307Google Scholar
  97. Skrøppa T (2005) Ex situ conservation methods. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora, Rome, pp 237–274, ISBN 80-967088–3Google Scholar
  98. Sutton WRJ (2013) Save the forests: use more wood. In: Fenning T (ed) Challenges and opportunities for the World’s forests in the 21st Century. Forestry sciences, vol 81. Springer, Berlin, pp 213–230, ISBN 978-94-007-7075–1Google Scholar
  99. Svenning JC (2003) Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol Lett 6:646–653Google Scholar
  100. Terhürne-Berson R, Litt T, Cheddadi R (2004) The spread of Abies throughout Europe since the last glacial period: combined macrofossil and pollen data. Veg Hist Archaeobot 13:257–268Google Scholar
  101. Terrab A, Talavera S, Arista M, Paun O, Stuessy TF, Tremetsberger K (2007) Genetic diversity of chloroplast microsatellites (cpSSRs) and geographic structure in endangered West Mediterranean firs (Abies spp., Pinaceae). Taxon 56(2):409–416Google Scholar
  102. Tinner W, Colombaroli D, Heiri O, Henne PD, Steinacher M, Untenecker J, Vescovi E, Allen JM, Carraro G, Conedera M, Joos F, Lotter AF, Luterbacher J, Samartin S, Valsecchi V (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83(4):419–439Google Scholar
  103. Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124Google Scholar
  104. Vondráková Z, Eliašová K, Fischerová L, Vágner M (2011) The role of auxins in somatic embryogenesis of Abies alba. Cent Eur J Biol 6:587–596Google Scholar
  105. Vooková B, Kormuťák A (2002) Some features of somatic embryo maturation of Algerian fir. In Vitro Cell Dev Biol Plant 38:549–551Google Scholar
  106. Vooková B, Kormuťák A (2003) Plantlet regeneration in Abies cilicica Carr. and Abies cilicica × Abies nordmanniana hybrid via somatic embryogenesis. Turk J Bot 27:71–76Google Scholar
  107. Vooková B, Kormuťák A (2007) Abies biotechnology—research and development of tissue culture techniques for vegetative propagation. Global Science Books, Takamatsu, pp 39–46Google Scholar
  108. Vooková B, Kormuťák A (2009) Improved plantlet regeneration from open-pollinated families of Abies alba trees of Dobroč primeval forest and adjoining managed stand via somatic embryogenesis. Biologia 64:1136–1140Google Scholar
  109. Vooková B, Kormuťák A (2014) Study of Abies somatic embryogenesis and its application. Dendrobiology 71:149–157Google Scholar
  110. Vooková B, Gajdošová A, Matúšová R (1998) Somatic embryogenesis in Abies alba × Abies alba and Abies alba × Abies nordmanniana hybrids. Biol Plantarum 40:523–530Google Scholar
  111. Vooková B, Matúšová R, Kormuťák A (2003) Secondary somatic embryogenesis in Abies numidica. Biol Plantarum 46:513–517Google Scholar
  112. Whetten RW, Kellison R (2010) Research gap analysis for application of biotechnology to sustaining US forests. J For 108:193–201Google Scholar
  113. Willis KJ, Rudner E, Sümegi P (2000) The full-glacial forests of central and southeastern Europe. Quatern Res 53:203–213Google Scholar
  114. Wolf H (2003) Technical guidelines for genetic conservation and use for silver fir (Abies alba). IPGRI, RomeGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jana Krajňáková
    • 1
    • 3
    Email author
  • Dušan Gömöry
    • 2
  • Hely Häggman
    • 3
  1. 1.Department of Agriculture and Environmental ScienceUniversity of UdineUdineItaly
  2. 2.Faculty of ForestryTechnical University ZvolenZvolenSlovakia
  3. 3.Department of BiologyUniversity of OuluOuluFinland

Personalised recommendations