Skip to main content

Transgenic Crops to Preserve Biodiversity

  • Chapter
  • First Online:
Biotechnology and Biodiversity

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 4))

Abstract

The rapidly expanding field of commercial transgenic cultivation has its greatest concern related to environmental well being as transgenic crops are seen as a threat to the biodiversity in the agricultural fields. Since transgenic technology is continuing to witness a rapid growth in terms of developing novel varieties, it is imperative to examine whether the developed varieties contribute to preserving biodiversity. Further, it is also necessary to focus future research towards developing transgenic varieties to contribute to preserving and enhancing the biodiversity. The present review aims to present an overview of the current status of transgenic technology in contributing to biodiversity and suggest future research strategies enabling the preservation of biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammann K (2005) Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops. Trends Biotechnol 23:388–394

    Article  PubMed  CAS  Google Scholar 

  • Animal Plant Health Inspection Service, USDA (2007) Introduction of genetically engineered organisms: draft programmatic environmental impact statement—July. http://www.aphis.usda.gov/brs/pdf/completeeis.pdf. Accessed 4 May 2014

  • Bambawale O, Singh A, Sharma O et al (2004) Performance of Bt cotton (MECH-162) under integrated pest management in farmers’ participatory field trial in Nanded district, central India. Curr Sci 86:1628–1633

    Google Scholar 

  • Barbosa P (1998) Conservation biological control. Academic, San Diego

    Google Scholar 

  • Barta P (2007) Feeding billions, a grain at a time. The Wall Street Journal, p A1. http://online.wsj.com/article/SB118556810848880619.html. Accessed 28 July 2007

  • Behrens MR, Mutlu N, Chakraborty S, Dumitru R, Jiang WZ, et al (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:1185–1188

    Article  PubMed  CAS  Google Scholar 

  • Bellon MR, Berthaud J (2004) Transgenic maize and the evolution of landrace diversity in Mexico: the importance of farmers’ behavior. Plant Physiol 134:883–888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beyer P (2010) Golden rice and ‘golden’ crops for human nutrition. New Biotechnol 27:478-481

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee R (2009) Harnessing biotechnology for conservation and increased utilization of orphan crops. ATDF J 6:24–32

    Google Scholar 

  • Bindraban PS, Franke AC, Ferraro DO, Ghersa CM, Lotz LAP, Nepomuceno A et al (2009) GM-related sustainability: agro-ecological impacts, risk and opportunities of soy production in Argentina and Brazil. Plant Research International 2009. Wageningen University and Research Centre, Wageningen, UR

    Google Scholar 

  • Bowman DT, May OL, Creech JB (2003) Genetic uniformity of the US upland cotton crop since the introduction of transgenic cottons. Crop Sci 43:515–518

    Article  Google Scholar 

  • Braun R, Ammann C (2003) Introduction: biodiversity—the impact of biotechnology. In: Ammann K, Jacot Y, Braun R (eds) Methods for risk assessment of transgenic plants. IV. Biodiversity and biotechnology. Birkhauser, Basel, pp vii–xv

    Google Scholar 

  • Brookes G, Yu TH, Tokgoz S, Elobeid A (2010) The production and price impact of biotech corn, canola andsoybean crops. AgBioForum 13:25–52

    Google Scholar 

  • Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28(4):319–321

    Article  PubMed  CAS  Google Scholar 

  • Carpenter JE (2011) Impacts of GE crops on biodiversity. ISB News Report June 2011, p 4

    Google Scholar 

  • Carpenter A, Gianessi L (1999) Herbicide tolerant soybeans: why growers are adopting roundup ready varieties. AgBioForum 2:65–72

    Google Scholar 

  • Cattaneo M, Yafuso C, Schmidt C, Huang C et al (2006) Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci U S A 103:7571–7576

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Champion GT, May MJ, Bennett D, Brooks DR, Clark SJ, Daniels RE et al (2003) Crop management and agronomic context of the farm scale evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lond B 358:1847–1862

    Article  Google Scholar 

  • Chapman MA, Burke JM (2006) Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytol 170:429–443

    Article  PubMed  CAS  Google Scholar 

  • Conner AJ, Glare TR, Nap J-P (2003) The release of genetically modified crops into the environment: part II. Overview of ecological risk assessment. Plant J 33:19–46

    Article  PubMed  Google Scholar 

  • Convention of Biological Diversity (2000) Sustaining life on earth—April. https://www.cbd.int/doc/publications/cbd-sustain-en.pdf. Accessed 4 May 2014

    Article  CAS  Google Scholar 

  • Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. 1st edn. John Murray, London

    Google Scholar 

  • Department Environment Food Rural Affairs (DEFRA) (2007) Environmental protection—genetic modification (GM)—farm scale evaluations. http://www.defra.gov.uk/environment/gm/fse/. Accessed 4 May 2014

  • Denby K, Gehring C (2005) Engineering drought and salinity stress tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol 23:547–552

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    Article  Google Scholar 

  • Duan JJ, Marvier M, Huesing J et al (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS ONE 3:e1415

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol 125:1543–1545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563

    Article  Google Scholar 

  • Emani C, Garcia JM, Finch E-L et al (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–336

    Article  PubMed  CAS  Google Scholar 

  • Garcia MA, Altieri MA (2005) Transgenic crops: implications for biodiversity and sustainable agriculture. Bull Sci Tech Soc 25:335–353

    Article  Google Scholar 

  • Gardner SN, Gressel J, Mangel M (1998) A revolving dose strategy to delay the evolution of both quantitative vs major monogene resistances to pesticides and drugs. Int J Pest Manag 44:161–180

    Article  CAS  Google Scholar 

  • Gepts P (2004) Introduction of transgenic crops in centers of origin and domestication. In: Kleinman DL, Kinchy AJ, Handelsman J (eds) Controversies in science and technology: from maize to menopause. University of Wisconsin Press, Madison, pp 119–134

    Google Scholar 

  • GM Compass (2009) Commercial GM crops in the EU in 2008. http://www.GMcompass.org/eng/agri_biotechnology/GM_planting/%3E392.gm_maize_cultivation_europe_2008.html. Accessed 18 April 2014

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gressel J (2008) Genetic glass ceilings: transgenics for crop biodiversity. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Gressel J, Gardner S N, Mangel M (1996) Prevention vs. remediation in resistance management. In: Brown TM (ed), Molecular Genetics and Ecology of Pesticide Resistance (pp. 169–186). Washington, D.C.: American Chemical Society

    Google Scholar 

  • Groombridge B, Jenkins MD (2002) World atlas of biodiversity: earth’s living resources in 21st century. Prepared by the UNEP World Conservation Monitoring Centre. University of California Press, Berkeley

    Google Scholar 

  • Gurr GM, Wratten SD, Luna J (2003) Multi-function agricultural biodiversity: pest management and other benefits. Basic Appl Ecol 4:107–116

    Article  Google Scholar 

  • Hancock JF (2003) A framework for assessing the risk of transgenic crops. BioScience 53:512–519

    Article  Google Scholar 

  • Hancock JF, Hokanson K (2001) Invasiveness of transgenic versus exotic plant species: how useful is the analogy? In: Strauss SH, Bradshaw HD (eds) The bioengineered forest: challenges for science and technology. RFF Press, Washington, DC, pp 181–189

    Google Scholar 

  • Herren HR (2003) Genetically engineered crops and sustainable agriculture. In: Amman K, Jocot Y, Braun R (eds) Methods for risk assessment of transgenic plants, IV. Biodiversity and biotechnology. Birkhauser, Basel, pp 54–76

    Google Scholar 

  • Hilbeck A (2001) Implications of transgenic, insecticideal plants for insect and plant biodiversity. Perspect Plant Ecol Evol Syst 4:43–61

    Article  Google Scholar 

  • Huang J, Hu R, Fan C et al (2002) Bt cotton benefits, costs, and impacts in China. AgBioForum 5:153–166

    Google Scholar 

  • Huang J, Hu R, Rozelle S, Pray C (2005) Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308:688–690

    Article  PubMed  CAS  Google Scholar 

  • International Union for Conservation of nature (IUCN): The World Conservation Union (2007) Current knowledge of the impact of genetically modified organisms on biodiversity and human health: an information paper. p 53

    Google Scholar 

  • Itoh K (2000) Occurrence of sulfonylurea resistant paddy weeds and their control. J Pestic Sci 25:281–284

    Article  Google Scholar 

  • Jacobsen S, Sorensen M, Pedersen SM, Weiner J (2013) Feeding the world; genetically modified crops versus agricultural biodiversity. Agr Sus Dev 33:651–662

    Google Scholar 

  • Jain HK (2010) Green revolution: history, impact and future. Studium, Housten

    Google Scholar 

  • James C (2003) Preview: global status of commercialized transgenic crops: 2002 (International Service for the Acquisition of Agri-Biotech Application Brief No. 30). ISAAA, Ithaca

    Google Scholar 

  • James C (2011) Global status of commercialized biotech/GM crops:2011. ISAAA Brief No. 43. ISAAA, Ithaca

    Google Scholar 

  • Kasuga M, Liu Q, Maiura S et al (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech 17:287–291

    Article  CAS  Google Scholar 

  • Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM (1999) The second silent spring? Nature 400:611–612

    Article  CAS  Google Scholar 

  • Krimsky S, Wrubel RP (1996) Agricultural biotechnology and the environment: science, policy and social issues. University of Illinois Press, Urbana

    Google Scholar 

  • Kropiwnicka M (2005) Biotechnology and food security in developing countries: the case for strengthening international environmental regimes. ISYP J Sci World Affairs 1:45–60

    Google Scholar 

  • Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK (2009) Potential of molecular markers in plant biotechnology. Plant Omics J 2:141–162

    CAS  Google Scholar 

  • Lawson LG, Larsen AS, Pedersen SM, Gylling M (2009) Perceptions of genetically modified crops among Danish farmers. Acta Agr Scand C-F E 6(2):99–118

    Google Scholar 

  • Lemaux PG (2009) Genetically engineered plants and foods: a scientist’s analysis of issues (part II). Annu Rev Plant Biol 60:511–559

    Article  PubMed  CAS  Google Scholar 

  • Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A et al (2010) Transcriptomewide identification of microRNA targets in rice. Plant J 62:742–759

    Article  PubMed  CAS  Google Scholar 

  • Lorito M, Woo SL, Fernandez IG et al (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci U S A 95:7860–7865

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1477

    Article  PubMed  CAS  Google Scholar 

  • Nandula VK, Reddy KN, Duke SO, Poston DH (2005) Glyphosate-resistant weeds: current status and future outlook. Outlooks Pest Manag 16:183–187

    Article  CAS  Google Scholar 

  • Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z (2003) The microRNA world: small is mighty. Trends Biochem Sci 28:534–540

    Article  PubMed  CAS  Google Scholar 

  • Nickson TE (2008) Planning environmental risk assessment for genetically modified crops: problem formulation for stress tolerant crops. Plant Physiol 147:494–502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Organization for economic co-operation and development (OECD) policy brief (2005) Agricultural market impacts of future growth in the production of biofuels. http://www.oecd.org/newsroom /34711139.pdf. Accessed 4 May 2014

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Pijut PM, Lawson SS, Michler CS (2011) Biotechnological efforts for preserving and enhancing temperate hardwood tree biodiversity, health, and productivity. In Vitro Cell Dev Biol Plant 47:123–147

    Article  Google Scholar 

  • Pingali P, Raney T (2005) From the green revolution to the gene revolution: how will the poor fare? ESA working paper no. 05–09. http://www.fao.org/es/esa, p 17

  • Pray CE, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China: the benefits continue. Plant J 31:423-430.

    Article  CAS  Google Scholar 

  • Raven PH (2010) Does the use of transgenic plants diminish or promote biodiversity? Nat Biotechnol 27:528–533

    Article  PubMed  CAS  Google Scholar 

  • Raybould A, Cooper I (2005) Tiered tests to assess the environmental risk of fitness changes in hybrids between transgenic crops and wild relatives: the example of virus resistant Brassica napus. Environ Bio Res 4:127–140

    Article  Google Scholar 

  • Romeis J, Bartsch D, Bigler F, Candolfi, MP et al (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotech 26:203–208

    Article  CAS  Google Scholar 

  • Schiøler E, Pinstrup-Andersen P (2009) Seeds of contention. Oxford University Press, Oxford

    Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sneller CH (2003) Impact of transgenic genotypes and subdivision on diversity within elite North American soybean germplasm. Crop Sci 43:409–414

    Article  Google Scholar 

  • Trigo EJ, Cap EJ (2006) Ten years of genetically modified crops in argentine agriculture. ArgenBio, Buenos Aires

    Google Scholar 

  • USDA (2007/2010) National Agricultural Statistics Service (NASS). Agricultural Statistics Board, US Department of Agriculture Acreage

    Google Scholar 

  • Van Buerren ETL, Backes G, de Vriend H, Ostergard H (2010) The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica 175:51–64

    Article  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3:e1829

    Article  PubMed  PubMed Central  Google Scholar 

  • Warwick S, Légère A, Imard M, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Watkinson AR, Freckleton RP, Robinson RA, Sutherland WJ (2000) Predictions of biodiversity response to genetically modified herbicide-tolerant crops. Science 289:1554–1557

    Article  PubMed  CAS  Google Scholar 

  • Watrud LS, Lee EH, Fairbrother A, Burdick C et al (2004) Evidence for landscape-level, pollen mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPE as a marker. Proc Natl Acad Sci U S A 101:14533–14538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • White JW, McMaster GS, Edmeades GO (2004) Genomics and crop response to global change: what have we learned? Field Crops Res 90:165–169

    Article  Google Scholar 

  • Whitehouse M, Wilson L, Fitt G (2005) A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environ Entomol 34:1224–1241

    Article  Google Scholar 

  • Wolfenbarger LL, Naranjo SE, Lundgren JG et al (2008) Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS ONE 3:e2118

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zheng Y, Jagadeeswaran G, Li Y, Gowdu K et al (2011) Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum. Genomics 98:460–468

    Article  PubMed  CAS  Google Scholar 

  • Zhao J-Z, Cao J, Li Y, Collins Hl et al (2003) Transgenic plants expressing two Bacillus thuringenesis toxins delay insect resistance evolution. Nat Biotecnol 21:1493–1497

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrakanth Emani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Emani, C. (2014). Transgenic Crops to Preserve Biodiversity. In: Ahuja, M., Ramawat, K. (eds) Biotechnology and Biodiversity. Sustainable Development and Biodiversity, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09381-9_1

Download citation

Publish with us

Policies and ethics