Advertisement

Fluid Dynamics pp 323-378 | Cite as

Turbulence

Chapter
  • 174k Downloads
Part of the Graduate Texts in Physics book series (GTP)

Abstract

As we pointed it out in the first pages of this book, the understanding of turbulence remains one of the challenges of nowadays physics. The goal of this chapter is to introduce the reader to the main approaches that are used to deal with this difficult problem.

Keywords

Turbulent Kinetic Energy Turbulent Viscosity Isotropic Turbulence Dissipation Scale Inertial Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arneodo, A., Manneville, S. & Muzy, J. F. (1998). Towards log-normal statistics in high Reynolds number turbulence. European Physical Journal B, 1, 129–140.ADSCrossRefGoogle Scholar
  2. Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. & Succi, S. (1993). Extended self-similarity in turbulent flows. Physical Review E, 48, R29.ADSCrossRefGoogle Scholar
  3. Castaing, B. (1989). Conséquences d’un principe d’extremum en turbulence. Journal of Physique, 50, 147.CrossRefGoogle Scholar
  4. Castaing, B. (1996). The temperature of turbulent flows. Journal of Physique 2, 6, 105–114.Google Scholar
  5. Chapman, C. J. & Proctor, M. R. E. (1980). Nonlinear Rayleigh–Benard convection between poorly conducting boundaries. Journal of Fluid Mechanics, 101, 759–782.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. Cheng, X.-L., Wang, B.-L. & Zhu, R. (2010). Kolmogorov Constants of Atmospheric Turbulence over a Homogeneous Surface. Atmospheric and Oceanic Science Letters, 3, 195–200.Google Scholar
  7. Chorin, A. (1991). Vorticity and turbulence. New York: Springer.Google Scholar
  8. Davidson, P. (2004). Turbulence: An introduction for scientists and engineers. Oxford: Oxford University Press.Google Scholar
  9. Dubrulle, B. (1994). Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. Physical Review Letters, 73, 959.ADSCrossRefGoogle Scholar
  10. Frisch, U. (1991). From global scaling, à la Kolmogorov, to local multifractal scaling in fully developed turbulence. Proceedings of the Royal Society of London, 434, 89.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. Frisch, U. 1995 Turbulence: The legacy of A. N. Kolmogorov. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  12. Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. (2003). Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Physics of Fluids, 15, L21–L24.ADSCrossRefGoogle Scholar
  13. von Kármán, T. & Howarth, L. (1938). On the statistical theory of isotropic turbulence. Proceedings of the Royal Society of London, 164A, 192.ADSCrossRefGoogle Scholar
  14. Launder, B. E. & Spalding, D. B. (1972). Lectures in mathematical models of turbulence. London: Academic Press.zbMATHGoogle Scholar
  15. Lesieur, M. (1990). Turbulence in fluids. Dordrecht: Kluwer.CrossRefzbMATHGoogle Scholar
  16. Leslie, D. (1973). Developments in the theory of turbulence. Oxford: Oxford Science Publishier.zbMATHGoogle Scholar
  17. McComb, W. D. (1990). The physics of fluid turbulence. Oxford: Oxford Science Publishier.Google Scholar
  18. Monin, A. & Yaglom, A. (1975). Statistical fluid mechanics (Vol. 1). Cambridge: MIT Press.Google Scholar
  19. Orszag, S. (1973). Fluids Dynamics. In Balian, R., & Peube, J.L. (Eds), Lectures on the statistical theory of turbulence. (pp. 237–374), Gordon and Breach, New York, 1977.Google Scholar
  20. Piquet, J. (2001). Turbulent flows: Models and physics. New York: Springer.Google Scholar
  21. Prandtl, L. (1925). Bericht über Untersuchungen zur ausgebildeten Turbulenz. Zeit. Ang. Math. Mech., 5, 136–139.zbMATHGoogle Scholar
  22. She, Z.-S. & Lévêque, E. (1994). Universal scaling laws in fully developed turbulence. Physical Review Letters, 72, 336.ADSCrossRefGoogle Scholar
  23. She, Z.-S. & Waymire, E. (1995). Quantized energy cascade and Log-Poisson statistics in fully developed turbulence. Physical Review Letters, 74, 262.ADSCrossRefGoogle Scholar
  24. Smagorinsky, J. (1963). General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review, 91, 99.Google Scholar
  25. Tennekes, H. & Lumley, J. (1972). A first course in turbulence. Cambridge: MIT Press.Google Scholar
  26. Vincent, A. & Meneguzzi, M. (1991). The spatial structure and statistical properties of homogeneous turbulence. Journal of Fluid Mechanics, 225, 1–20.ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut de Recherche en Astrophysique et PlanétologieUniversité Paul SabatierToulouseFrance

Personalised recommendations