Skip to main content

Quantifying the Evolutions of Social Interactions

  • Conference paper
  • 2948 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8588))

Abstract

Understanding social interactions and their evolutions has important implications for exploring the collective intelligence embedded in social networks. However, the dynamic patterns in social interactions are not well investigated, and the time when the interactions take place is ignored in the existing studies. In this paper, a graph-based model incorporating a decay function is proposed to study the evolutions of social interactions quantitatively. In the experiments, the proposed model is applied to Digg dataset. The results show that the node degree of the social interaction graph follows the power law distribution, and the users’ interactions have locality property. Furthermore, the results demonstrate that the evolutions of social interactions are useful for tracking the trends of topics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Qiu, B., Ivanova, K., Yen, J., Liu, P.: Behavior evolution and event-driven growth dynamics in social networks. In: SocialCom, pp. 217–224 (2010)

    Google Scholar 

  2. Perra, N., Gongalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Nature 2, 469 (2012)

    Google Scholar 

  3. Holme, P., Saramaki, J.: Temporal networks. Physics Reports 519(3), 97–125 (2012)

    Article  Google Scholar 

  4. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Yang, Z., Xue, J., Zhao, X., Wang, X., Zhao, B.Y., Dai, Y.: Unfolding dynamics in a social network: co-evolution of link formation and user interaction. In: WWW (2013)

    Google Scholar 

  6. Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Systematic topology analysis and generation using degree correlations. In: SIGCOMM (2006)

    Google Scholar 

  7. Barabasi, A.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  8. Vazquez, A.: Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Physical Review E (2003)

    Google Scholar 

  9. Sala, A., Cao, L., Wilson, C., Zablit, R., Zheng, H., Zhao, B.Y.: Measurement-calibrated graph models for social network experiments. In: WWW (2010)

    Google Scholar 

  10. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: KDD, pp. 462–470 (2008)

    Google Scholar 

  11. Jin, E., Girvan, M., Newman, M.E.J.: Structure of growing social networks. Physical Review E 64, 046132 (2001)

    Google Scholar 

  12. Palla, G., Barabasi, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007)

    Article  Google Scholar 

  13. Fabbri, R., Junior, V., Fabbri, R., Antunes, D., Pisani, M., Costa, L.: On the evolution of interaction networks: primitive typology of vertex and prominence of measures. arXiv:1310.7769 (2013)

    Google Scholar 

  14. Wang, X., Zhai, C., Hu, X., Sproat, R.: Mining correlated bursty topic patterns from correlated text stream. In: KDD (2007)

    Google Scholar 

  15. Choudhury, M.D., Sundaram, H., John, A., Seligmann, D.D.: Social synchrony: predicting mimicry of user actions in online social media. In: SocialCom (2009)

    Google Scholar 

  16. Banos, R.A., Borge-Holthoefer, J., Moreno, Y.: The role of hidden influentials in the diffusion of online information cascades. EPJ Data Science (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wu, Z., Liu, Y., Li, D., Zhuang, Y. (2014). Quantifying the Evolutions of Social Interactions. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theory. ICIC 2014. Lecture Notes in Computer Science, vol 8588. Springer, Cham. https://doi.org/10.1007/978-3-319-09333-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09333-8_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09332-1

  • Online ISBN: 978-3-319-09333-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics