Skip to main content

A Restrained Optimal Perturbation Method for Solving a Kind of Inverse Problem with Variable Coefficient

  • Conference paper
Intelligent Computing in Bioinformatics (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8590))

Included in the following conference series:

  • 3425 Accesses

Abstract

A restrained optimal perturbation method is proposed to study one-dimensional variable coefficient backward inverse heat conduction problem. We determine the initial temperature distribution from final measurement data. Owning to the ill-posedness of this problem, a regularization term is introduced in the objective function, which based on the thought of regularization technique. And we give a brief description about the application in Genetic regulatory networks. Numerical experiments show that the method is feasibility in the determination of initial condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mera, N.S., Elliott, L., Ingham, D.B., Lesnic, D.: An iterative boundary element method for solving the one-dimensional backward heat conduction problem. Int. J. Heat Mass Transfer 44, 1937–1946 (2001)

    Article  MATH  Google Scholar 

  2. Cannon, J.R., Duchateau, P.: Structural identification of an unknown source term in a heat equation. Inverse Problems 14, 535–551 (2001)

    Article  MathSciNet  Google Scholar 

  3. Molhem, H., Pourgholi, R.: A numerical algorithm for solving a one-dimensional inverse heat conduction problem. J. Math. Statis. 4, 60–63 (2008)

    Article  MathSciNet  Google Scholar 

  4. Jia, X.Z., Wang, Y.B.: A boundary integral method for solving inverse heat conduction problem. J. Inv. Ill-posed Problem 14, 375–384 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dehghan, M.: Numerical computation of a control function in a partial differential equation. Appl. Math. Comput. 147, 397–408 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lesnic, D., Elliott, L., Ingham, D.B.: Application of the boundary element method to inverse heat conduction problems. J. Heat and Mass Transfer 39, 1503–1517 (1996)

    Article  MATH  Google Scholar 

  7. Wang, B., Zou, G.A., Zhao, P.: Finite volume method for solving a one-dimensional parabolic inverse problem. Appl. Math. Comput. 217, 5227–5235 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Geng, F.Z., Lin, Y.Z.: Application of the variational iteration method to inverse heat source problem. Comput. Math. Appl. 58, 2098–2102 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shidfar, A., Karamali, G.R., Damichi, J.: An inverse heat conduction problem with a nonlinear source term. Nonlinear Anal. 65, 615–621 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, Q., Liu, J.J.: Solving an inverse parabolic problem by optimization from final measurement data. J. Comput. Appl. Math. 193, 183–203 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Han, H., Ingham, D.B., Yuan, Y.: The boundary element method for the solution of the backward heat conduction equation. J. Comput. Phys. 116, 292–299 (1995)

    Article  MATH  Google Scholar 

  12. Liu, J.J.: Numerical solution of forward and backward problem for 2-D heat conduction equation. J. Comput. Appl. Math. 145, 459–482 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu, C.S.: Group preserving scheme for backward heat conduction problems. Int. J. Heat Mass Transfer 47, 2567–2576 (2004)

    Article  MATH  Google Scholar 

  14. Chang, J.R., Liu, C.S., Chang, C.W.: A new shooting method for quasi-boundary regularization of backward heat conduction problems. Int. J. Heat Mass Transfer 50, 2325–2332 (2007)

    Article  MATH  Google Scholar 

  15. Cheng, J., Liu, J.J.: A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution. Inverse Problems 24, 065012, doi:10.1088/0266-5611/24/6/065012

    Google Scholar 

  16. Lesnic, D., Elliott, L., Ingham, D.B.: An iterative boundary element method for solving the backward heat conduction problem using an elliptic approximation. Inverse Problems in Engineering 6, 255–279 (1998)

    Article  Google Scholar 

  17. Chang, C.W., Liu, C.S.: A new algorithm for direct and backward problems of heat conduction equation. Int. J. Heat Mass Transfer 53, 5552–5569 (2010)

    Article  MATH  Google Scholar 

  18. Shidfar, A., Zakeri, A.: A numerical technique for backward inverse heat conduction problems in one-dimensional space. Appl. Math. Comput. 171, 1016–1024 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Xiong, X.T., Fu, C.L., Qian, Z.: Two numerical methods for solving a backward heat conduction problem. Appl. Math. Comput. 179, 370–377 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kabanikhin, S.I., Penenko, A.V.: Convergence analysis of gradient descend methods generated by two different functionals in a backward heat conduction problem. J. Inv. Ill-posed Problems 17, 713–732 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mu, M., Duan, W.S., Wang, B.: Conditional nonlinear optimal perturbation and its applications Nonlin. Processes Geophys. 10, 493–501 (2003)

    Article  Google Scholar 

  22. Mu, M., Duan, W.S.: A new approach to studying ENSO predictability: conditional nonlinear optimal perturbation. Chinese Sci. Bull. 48, 1045–1047 (2003)

    Article  Google Scholar 

  23. Birgin, E.G., Martinez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM Journal on Optimization 10, 1196–1211 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Birgin, E.G., Martinez, J.M., Raydan, M.: Inexact spectral projected gradient methods on convex sets. SIAM Journal of Numerical Analysis 23, 539–559 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jong, H.D.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Boil. 9, 67–103 (2002)

    Article  Google Scholar 

  26. Somogyi, R., Sniegoski, C.A.: Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity 1, 45–63 (1996)

    Article  MathSciNet  Google Scholar 

  27. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. In: Proceedings of the Fourth Annual International Conference on Computational Molecular Biology. ACM Press, New York (2000)

    Google Scholar 

  28. D’Haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear modeling of mRNA expression levels during CNS development and injury. In: Pacific Symposium on Biocomputing, vol. 4, pp. 41–52 (1999)

    Google Scholar 

  29. McAdams, H.M., Arkin, A.: Stochastic mechanism in gene expression. Proceedings of the National Academy of Science of the USA 94, 814–819 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, B., Yuan, Y., Zou, Ga. (2014). A Restrained Optimal Perturbation Method for Solving a Kind of Inverse Problem with Variable Coefficient. In: Huang, DS., Han, K., Gromiha, M. (eds) Intelligent Computing in Bioinformatics. ICIC 2014. Lecture Notes in Computer Science(), vol 8590. Springer, Cham. https://doi.org/10.1007/978-3-319-09330-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09330-7_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09329-1

  • Online ISBN: 978-3-319-09330-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics