Skip to main content

Abstract

As described in Chap. 1, one of the major adsorber heat exchanger design requirements is the reduction of the ratio between the heat capacity of the adsorber heat exchanger material as well as its heat transfer medium’s holdup and the heat capacity of the applied adsorbent. This results in enhancing the coefficient of performance of the adsorption heat pump and increases the obtainable specific heating or cooling power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guilleminot JJ, Choisier A, Chaflen JB, Nicolas S, Reymoney JL (1993) Heat transfer intensification in fixed bed adsorbers. Heat Recovery Syst CHP 13:297–300

    Article  Google Scholar 

  2. Lang R, Westerfeld T, Gerlich A, Knoche KF (1996) Enhancement of heat and mass transfer in compact zeolite layers. Adsorption 2:121–132

    Article  Google Scholar 

  3. Gordeeva LG, Aristov YuI, Freni A, Restuccia G (2002) Preparation of zeolite layers with enhanced mass transfer properties for adsorption air conditioning. Int Sorp Heat Pump Conf Shanghai 24–27:625–629

    Google Scholar 

  4. Guilleminot JJ, Chaflen JB, Choisie A (1994) Heat and mass transfer characteristics of composites for adsorption heat pumps. In: Proceedings of the international absorption heat pump conference, AES-vol 31, pp. 401–406. New Orleans, Louisiana

    Google Scholar 

  5. Wang LW, Tamainot-Telto Z, Thorpe R, Critoph RE, Metcalf SJ, Wang RZ (2011) Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration. Renew Energy 36:2062–2066

    Article  Google Scholar 

  6. Tamainot-Telto Z, Critoph RE (2001) Monolithic carbon for sorption refrigeration and heat pump applications. Appl Therm Eng 21:37–52

    Article  Google Scholar 

  7. Pino L, Aristov Yu, Cacciola G, Restuccia G (1996) Composite materials based on zeolite 4A for adsorption heat pumps. Adsorption 3:33–40

    Article  Google Scholar 

  8. Restuccia G, Freni A, Cacciola G (1999) Adsorption beds of zeolite on aluminium sheets. In: International sorption heat pump conference, 24–26 March, Munich, Germany, pp. 343–347. ISBN 3-7846-1220-2

    Google Scholar 

  9. Santamaria S, Sapienza A, Frazzica A, Freni A, Girnik IS, Aristov YuI (2014) Water adsorption dynamics on representative pieces of real adsorbers for adsorptive chillers. Appl Energy 134:11–19

    Article  Google Scholar 

  10. Sapienza A, Santamaria S, Frazzica A, Freni A (2011) Influence of the management strategy and operating conditions on the performance of an adsorption chiller. Energy 36:5532–5538

    Article  Google Scholar 

  11. Gordeeva L, Aristov YuI (2014) Dynamic study of methanol adsorption on activated carbon ACM-35.4 for enhancing the specific cooling power of adsorptive chillers. Appl Energy 117:127–133

    Article  Google Scholar 

  12. Aristov YI, Glaznev IS, Girnik IS (2012) Optimization of adsorption dynamics in adsorptive chillers: loose grains configuration. Energy 46:484–492

    Article  Google Scholar 

  13. Gordeeva L, Frazzica A, Sapienza A, Aristov YuI, Freni A (2014) Adsorption cooling utilizing the “LiBr/silica—ethanol” working pair: dynamic optimization of the adsorber/heat exchanger unit. Energy 75:390–399

    Article  Google Scholar 

  14. Gordeeva LG, Aristov YuI (2011) Composite sorbent of methanol “LiCl in mesoporous silica gel” for adsorption cooling: dynamic optimization. Energy 36:1273–1279

    Article  Google Scholar 

  15. Tatlier M, Erdem-Şenatalar A (1999) the effects of thermal and mass diffusivities on the performance of adsorption heat pumps employing zeolite synthesized on metal supports. Microporous Mesoporous Mater 28:195–203

    Article  Google Scholar 

  16. Bonaccorsi L, Proverbio E (2004) Synthesis of thick zeolite 4A coatings on stainless steel. Microporous Mesoporous Mater 74:221–229

    Article  Google Scholar 

  17. Bonaccorsi L, Calabrese L, Freni A, Proverbio E, Restuccia G (2013) Zeolites direct synthesis on heat exchangers for adsorption heat pumps. Appl Therm Eng 50:1590–1595

    Article  Google Scholar 

  18. Bonaccorsi L, Freni A, Proverbio E, Restuccia G, Russo F (2006) Zeolite coated copper foams for heat pumping applications. Microporous Mesoporous Materials 91:7–14

    Article  Google Scholar 

  19. Füldner G, Schnabel L, Wittstadt U, Henning H-M, Schmidt FP (2011) Numerical layer optimization of aluminium fibre/SAPO-34 composites for the application in adsorptive heat exchangers. In: Proceedings of the international sorption heat pump conference 2011, 06–08 April, 2011, Padova, Italy, pp 533–542

    Google Scholar 

  20. Bauer J, Herrmann R, Mittelbach W, Schwieger W (2009) Zeolite/aluminum composite adsorbents for application in adsorption refrigeration. Int J Energy Res 33:1233–1249

    Article  Google Scholar 

  21. Bonaccorsi L, Calabrese L, Freni A, Proverbio E (2013) Hydrothermal and microwave synthesis of SAPO (CHA) zeolites on aluminium foams for heat pumping applications. Microporous Mesoporous Mater 167:30–37

    Article  Google Scholar 

  22. Jaeschke S, Wolf M (2007) Layer composite and production thereof, Patent WO 2007017015 A3

    Google Scholar 

  23. Dawoud B, Vedder U, Amer E-H, Dunne S (2007) Non-isothermal adsorption kinetics of water vapour into a consolidated zeolite layer. Int J Heat Mass Transf 50:2190–2199

    Article  MATH  Google Scholar 

  24. Restuccia G, Freni A, Maggio G (2002) A zeolite-coated bed for air conditioning adsorption systems: parametric study of heat and mass transfer by dynamic simulation. Appl Therm Eng 22:619–630

    Article  Google Scholar 

  25. van Heyden H, Munz G, Schnabel L, Schmidt F, Mintova S (2009) Kinetics of water adsorption in microporous aluminophosphates for regenerative heat exchangers. Appl Therm Eng 29:1514–1522

    Article  Google Scholar 

  26. Waszkiewicz SD, Tierney MJ, Saidani Scot H (2009) Development of coated, annular fins for adsorption chillers. Appl Therm Eng 29:2222–2227

    Google Scholar 

  27. Okamoto K, Teduka M, Nakano T, Kubokawa S, Kakiuchi H (2010) The development of AQSOA water adsorbent and AQSOA coated heat exchanger. In: IMPRES conference, pp. 27–32

    Google Scholar 

  28. Freni A, Bonaccorsi L, Calabrese L, Caprì A, Frazzica A, Sapienza A (Accepted) Sapo-34 coated adsorbent heat exchanger for adsorption chillers. Appl Therm Eng

    Google Scholar 

  29. Freni A, Frazzica A, Dawoud B, Chmielewski S, Bonaccorsi L, Calabrese L (2013) Adsorbent coatings for heat pumping applications: verification of hydrothermal and mechanical stabilities. Appl Therm Eng 50:1658–1663

    Article  Google Scholar 

  30. Sauer J, Dawoud B, van Heyden H, Klaschinsky H, Lohmoller S (2008) Adsorberelement und Verfahren zur Herstellung eines Adsorberelements, Patent DE102008050926 A1

    Google Scholar 

  31. Sibilia JP et al (1996) Materials characterization and chemical analysis. Wiley, New York. ISBN 1-56081-922-7

    Google Scholar 

  32. Karger J, Ruthven DM (1992) Diffusion in zeolites and other microporous solids. Wiley, London

    Google Scholar 

  33. http://www.iza-structure.org/databases/

  34. Mackenzie RC (1970) Differential thermal analysis. Academic press, London

    Google Scholar 

  35. Breck DW (1964) Zeolite molecular sieves. Wiley, New York

    Google Scholar 

  36. Henninger SK, Freni A, Schossig P, Restuccia G (2011) Unified water adsorption measurement procedure for sorption materials. In: Proceedings of international sorption heat pump conference, 6–8 April 2011, Padova, Italy, pp. 513–522. ISBN 978-2-913149-87-8

    Google Scholar 

  37. Crank J (1975) Mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  38. Aristov YI, Tokarev MM, Freni A, Glaznev IS, Restuccia G (2006) Kinetics of water adsorption on silica Fuji Davison RD. Microporous Mesoporous Mater 96:65–71

    Article  Google Scholar 

  39. Rothmeyer M (1985) Warmetransformation mit dem stoffpaar zeolith-wasser. PhD thesis, Institut fur Festkorperphysik, TU Munich

    Google Scholar 

  40. Storch G, Reichenauer G, Scheffler F, Hauer A (2008) Hydrothermal stability of pelletized zeolite 13X for energy storage applications. Adsorption 14:275–2841

    Article  Google Scholar 

  41. Belding WA, Delmast MPF, Holeman W (1996) Dessiccant aging and its effect on desiccant cooling system performance. Appl Therm Eng 16:447–459

    Article  Google Scholar 

  42. Lourenco JP, Ribeiro MF, Ribeiro FR, Rocha J, Gabelica Z, Derouane EG (1995) Thermal and hydrothermal stability of SAPO-40. Microporous Mater 4:445–453

    Article  Google Scholar 

  43. Dawoud B, Dunne S, Lang R (2002) Experimental investigation of the kinetics of water vapor adsorption into Molsivtm DDZ-70 under typical operating conditions of adsorption heat pumps. In: International sorption heat pump conference

    Google Scholar 

  44. Aristov YuI, Dawoud B, Glaznev IS, Elyas A (2008) A new methodology of studying the dynamics of water sorption/desorption under real operating conditions of adsorption heat pumps: experiment. Int J Heat Mass Transf 51:4966–4972

    Article  Google Scholar 

  45. Sapienza A, Santamaria S, Frazzica A, Freni A, Aristov YuI (2014) Dynamic study of adsorbers by a new gravimetric version of the large temperature jump method. Appl Energy 113:1244–1251

    Article  Google Scholar 

  46. Wittstadt U, Jahnke A, Schnabel L, Sosnowski M, Schmidt FP, Ziegler F (2008) Test facility for small-scale adsorbers. In: International sorption heat pump conference

    Google Scholar 

  47. Dawoud B (2013) Water vapor adsorption kinetics on small and full scale zeolite coated adsorbers: a comparison. Appl Therm Eng 50:1645–1651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Freni .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Freni, A. et al. (2015). Adsorption Heat Exchangers. In: Characterization of Zeolite-Based Coatings for Adsorption Heat Pumps. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-09327-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09327-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09326-0

  • Online ISBN: 978-3-319-09327-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics