Skip to main content

Optofluidic Applications for Photorefractive Optoelectronic Tweezers

  • Chapter
  • First Online:
Book cover Photorefractive Optoelectronic Tweezers and Their Applications

Part of the book series: Springer Theses ((Springer Theses))

  • 463 Accesses

Abstract

In this chapter, advanced applications of the previously described POT will be presented. These applications are especially relevant for the field of optofluidics, which describes the fusion of optical elements with the beneficial aspects of microfluidics [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Whitesides, The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    Article  ADS  Google Scholar 

  2. D. Psaltis, S. Quake, C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006)

    Article  ADS  Google Scholar 

  3. C. Monat, P. Domachuk, B.J. Eggleton, Integrated optofluidics: a new river of light. Nat. Photonics 1, 106–114 (2007)

    Article  ADS  Google Scholar 

  4. J. Imbrock, S. Wevering, K. Buse, E. Kratzig, Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses. J. Opt. Soc. Am. B: Opt. Phys. 16(9), 1392–1397 (1999)

    Article  ADS  Google Scholar 

  5. S. Glaesener, M. Esseling, C. Denz, Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate. Opt. Lett. 37(18), 3744–3746 (2012)

    Article  ADS  Google Scholar 

  6. Y. Berdichevsky, J. Khandurina, A. Guttman, Y. Lo, UV/ozone modification of poly (dimethylsiloxane) microfluidic channels. Sens. Actuators, B: Chem. 97(2–3), 402–408 (2004)

    Google Scholar 

  7. R. Kretschmer, W. Fritzsche, Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis. Langmuir 20(26), 11797–11801 (2004)

    Article  Google Scholar 

  8. A.L. Briseno, S.C.B. Mannsfeld, M.M. Ling, S. Liu et al., Patterning organic single-crystal transistor arrays. Nature 444(7121), 913–917 (2006)

    Article  ADS  Google Scholar 

  9. S.-K. Chae, C.-H. Lee, S.H. Lee, T.-S. Kim et al., Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase. Lab Chip 9(13), 1957–1961 (2009)

    Article  Google Scholar 

  10. M. Esseling, F. Holtmann, M. Woerdemann, C. Denz, Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system. Opt. Express 18(16), 17404–17411 (2010)

    Article  Google Scholar 

  11. J. Villarroel, H. Burgos, A. Garcia-Cabanes, M. Carrascosa et al., Photovoltaic versus optical tweezers. Opt. Express 19(24), 24320–24330 (2011)

    Article  ADS  Google Scholar 

  12. M. Esseling, S. Glaesener, F. Volonteri, C. Denz, Opto-electric particle manipulation on a bismuth silicon oxide crystal. Appl. Phys. Lett. 100(16), 161903 (2012)

    Article  ADS  Google Scholar 

  13. S. Grilli, P. Ferraro, Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals. Appl. Phys. Lett. 92, 232902 (2008)

    Article  ADS  Google Scholar 

  14. R. Weis, T. Gaylord, Lithium-niobate - summary of physical properties and crystal-structure. Appl. Phys. A Mater. Sci. Process. 37(4), 191–203 (1985)

    Article  ADS  Google Scholar 

  15. L. Myers, R. Eckardt, M. Fejer, R. Byer et al., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO\(_3\). J. Opt. Soc. Am. B: Opt. Phys. 12(11), 2102–2116 (1995)

    Article  ADS  Google Scholar 

  16. R. Batchko, V. Shur, M. Fejer, R. Byer, Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation. Appl. Phys. Lett. 75(12), 1673–1675 (1999)

    Article  ADS  Google Scholar 

  17. M. Esseling, A. Zaltron, C. Sada, C. Denz, Charge sensor and particle trap based on z-cut lithium niobate. Appl. Phys. Lett. 103, 061115 (2013)

    Article  ADS  Google Scholar 

  18. H.A. Eggert, F.Y. Kuhnert, K. Buse, J.R. Adleman et al., Trapping of dielectric particles with light-induced space-charge fields. Appl. Phys. Lett. 90, 241909 (2007)

    Article  ADS  Google Scholar 

  19. M. Esseling, A. Zaltron, N. Argiolas, G. Nava et al., Highly reduced iron-doped lithium niobate for opto-electronic tweezers. Appl. Phys. B Lasers Opt. 113(2), 191–197 (2013)

    Article  ADS  Google Scholar 

  20. L. Miccio, M. Paturzo, A. Finizio, P. Ferraro, Light induced patterning of poly (dimethylsiloxane) microstructures. Opt. Express 18(11), 10947–10955 (2010)

    Article  ADS  Google Scholar 

  21. L. Miccio, P. Memmolo, S. Grilli, P. Ferraro, All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning. Lab Chip 12(21), 4449–4454 (2012)

    Article  Google Scholar 

  22. J.K. Valley, A. Jamshidi, A.T. Ohta, H.-Y. Hsu et al., Operational regimes and physics present in optoelectronic tweezers. J. Microelectromech. Syst. 17(2), 342–350 (2008)

    Article  Google Scholar 

  23. A. Emslie, F. Bonner, L. Peck, Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 29(5), 858–862 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Dow Corning, Product information: Sylgard 184 silicone elastomer (2013)

    Google Scholar 

  25. W. Zhang, G. Ferguson, S. Tatic-Lucic, Elastomer-supported cold welding for room temperature wafer-level bonding. In 17th IEEE International Conference on Micro Electro Mechanical Systems Technical Digest, (2004), pp. 741–744

    Google Scholar 

  26. W. Zhang, J. Labukas, S. Tatic-Lucic, L. Larson et al., Novel room-temperature first-level packaging process for microscale devices. Sens. Actuators, A 123–124, 646–654 (2005)

    Article  Google Scholar 

  27. E. Hecht, Optik (Oldenbourg, München, 2002)

    Google Scholar 

  28. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 2005)

    Google Scholar 

  29. D.C. González, Master’s thesis, Fabrication of polymeric diffraction gratings by means of optically induced dielectrophoresis, University of Münster, 2014

    Google Scholar 

  30. I. Shestopalov, J. Tice, R. Ismagilov, Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4(4), 316–321 (2004)

    Article  Google Scholar 

  31. Z. Nie, S. Xu, M. Seo, P. Lewis et al., Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J. Am. Chem. Soc. 127(22), 8058–8063 (2005)

    Article  Google Scholar 

  32. Z. Nie, W. Li, M. Seo, S. Xu et al., Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J. Am. Chem. Soc. 128(29), 9408–9412 (2006)

    Article  Google Scholar 

  33. T. Nisisako, T. Torii, T. Takahashi, Y. Takizawa, Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system. Adv. Mater. 18(9), 1152+ (2006)

    Article  Google Scholar 

  34. T. Nisisako, T. Torii, T. Higuchi, Droplet formation in a microchannel network. Lab Chip 2(1), 24–26 (2002)

    Article  Google Scholar 

  35. K.R. Strehle, D. Cialla, P. Roesch, T. Henkel et al., A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal. Chem. 79(4), 1542–1547 (2007)

    Article  Google Scholar 

  36. S. Anna, N. Bontoux, H. Stone, Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82(3), 364–366 (2003)

    Article  ADS  Google Scholar 

  37. B. Weigl, G. Domingo, P. LaBarre, J. Gerlach, Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip 8(12), 1999–2014 (2008)

    Article  Google Scholar 

  38. T. Jones, M. Washizu, Multipolar dielectrophoretic and electrorotation theory. J. Electrostat. 37(1–2), 121–134 (1996)

    Article  Google Scholar 

  39. 3M Deutschland GmbH. “Novec 7300 datasheet” (2013)

    Google Scholar 

  40. 3M Deutschland GmbH. “Novec 7500 datasheet” (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Esseling .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Esseling, M. (2015). Optofluidic Applications for Photorefractive Optoelectronic Tweezers. In: Photorefractive Optoelectronic Tweezers and Their Applications. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-09318-5_6

Download citation

Publish with us

Policies and ethics