Skip to main content

The Quantum Nature of the Casimir Force

  • Chapter
  • First Online:
  • 770 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The role of the vacuum in the Casimir Effect is a matter of some dispute: the Casimir force has been variously described as a phenomenon resulting “from the alteration, by the boundaries, of the zero-point electromagnetic energy” or a “van der Waals force between the metal plates” that can be “computed without reference to zero point energies”. Here, we will consider a third account (a ‘via media’) in which the force is considered to arise due to the coupling of fluctuating currents to the zero-point radiation.

Natura abhorret vacuum (Translated: Nature abhors a vacuum).

Franois Rabelais, Gargantua and Pantagruel

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Inevitably, this is an interim position. We know that a better theory will eventually be required because of the deep problems in reconciling quantum field theory and gravity.

  2. 2.

    See Chap. 1 for a discussion of the original Casimir Effect.

  3. 3.

    This additional term appears as the second term in Eq. (1.1.21).

  4. 4.

    Lifshitz theory predicts repulsive Casimir forces, under certain circumstances [35].

  5. 5.

    As we shall see, additional divergences in the stress appear in the generalisation to inhomogeneous media (where the optical properties vary continuously along at least one spatial axis). In this case, the regularisation cannot remove the infinities [9, 10, 36, 37].

  6. 6.

    See Sect. 2.2.

  7. 7.

    Some argue for the consistency of Lifshitz theory with Casimir’s approach. Bordag writes: “Lifshitz considered the fluctuations in the medium as source. In the modern understanding, these two are equivalent. However, the discussion about two ways continues until present time” [28]. Schwinger, on the other hand, seems to exploit the ambiguity of Lifshitz’ theory with his ‘source theory’, replacing the fluctuations of the vacuum with source fields in the plates, with the intention of removing any references to a vacuum state with non-zero physical properties [27].

  8. 8.

    The zero-point term is suppressed in the statement of the diagonalised Hamiltonian in the original paper [21], but a zero-point energy is present nonetheless.

  9. 9.

    See Sect. 2.3.3.

  10. 10.

    Lifshitz’ stress tensor, commonly used for calculating Casimir forces in realistic systems, is in fact derived under the condition of thermal equilibrim [15, 16, 25].

  11. 11.

    The dynamics are obtained by extremising the action.

  12. 12.

    That is, a thing in itself.

  13. 13.

    Saunders’ observation is sapiential. He writes: ‘on every other of the major schools of thought on the interpretation of quantum mechanics [besides stochastic hidden variable theories]... there is no reason to suppose that the observed properties of the vacuum, when correlations are set up between fields in vacuuo and macroscopic systems, are present in the absence of such correlations’ [6]. Boi notes the possibility of taking ‘the vacuum as a kind of pre-substance, an underlying substratum having a potential substantiality. It can... become physical reality if various other properties are injected into it’ [7].

References

  1. H.B.G Casimir, Koninkl. Ned. Akad. Wetenschap., 51, 793 (1948)

    Google Scholar 

  2. S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997)

    Google Scholar 

  3. M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rep. 353, 1–205 (2001)

    Google Scholar 

  4. S.M. Carroll, Living Rev. Rel. 4, 1 (2001)

    Google Scholar 

  5. R.L. Jaffe, Phys. Rev. D 72(021301(R)) (2005)

    Google Scholar 

  6. S. Saunders, Ontological Aspects of Quantum Field Theory (World Scientific, London, 2002)

    Google Scholar 

  7. L. Boi, The Quantum Vacuum (The Johns Hopkins University Press, Baltimore, 2011)

    Google Scholar 

  8. S. Saunders, H.R. Brown (eds.), The Philosophy of Vacuum (Clarendon Press, Oxford, 1991)

    Google Scholar 

  9. S.A.R. Horsley, W.M.R. Simpson, Phys. Rev. A 88(013833) (2013)

    Google Scholar 

  10. W.M.R. Simpson, S.A.R. Horsley, U. Leonhardt, Phys. Rev. A 87, 043806 (2013)

    Google Scholar 

  11. U. Leonhardt, Essential Quantum Optics (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  12. P.W. Milonni, The Quantum Vacuum (Academic Press, New York, 1994)

    Google Scholar 

  13. J.N. Munday, F. Capasso, V.A. Parsegian, Nature 457, 170 (2009)

    Article  ADS  Google Scholar 

  14. A.W. Rodriguez, F. Capasso, S.G. Johnson, Nat. Photonics 5, 211 (2011)

    Article  ADS  Google Scholar 

  15. E.M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1955)

    Google Scholar 

  16. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Adv. Phys. 10, 165 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  17. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics (Part 2). (Butterworth-Heinemann, Oxford, 2003)

    Google Scholar 

  18. T.G. Philbin, New. J. Phys. 13, 063026 (2011)

    Article  ADS  Google Scholar 

  19. T.G. Philbin, C. Xiong, U. Leonhardt, Ann. Phys. 325, 579 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. L.P. Pitaevskii, In Casimir physics, Vol. 834, ed. by Diego Dalvit, Peter Milonni, David Roberts, Felipe da Rosa. Lecture Notes in Physics. (Springer, Berlin, 2011), pp 23–37

    Google Scholar 

  21. T.G. Philbin, New J. Phys. 12, 123008 (2010)

    Article  ADS  Google Scholar 

  22. L. Knöll, S. Scheel, D.-G. Welsch, Coherence and Statistics of Photons and Atoms (Wiley, New York, 2001)

    Google Scholar 

  23. G. Barton, New J. Phys. 12(113045) (2010)

    Google Scholar 

  24. F.S.S Rosa, D.A.R Dalvit, P.W. Milonni, Phys. Rev. A 81, 033812 (2010)

    Google Scholar 

  25. L.P. Pitaevskii, Phys. Rev. A 73, 047801 (2006)

    Article  ADS  Google Scholar 

  26. C. Raabe, D.-G. Welsch, Phys. Rev. A 71, 013814 (2005)

    Google Scholar 

  27. J. Schwinger, L.L. DeRaad, K.A. Milton, ANNALS Ann. Phys. 115, 1–23 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Bordag, Phys. Rev. D, 85(025005) (2012)

    Google Scholar 

  29. S.J. Rahi, T. Emig, N. Graham, R.L. Jaffe, M. Kardar, Phys. Rev. D 80, 085021 (2009)

    Article  ADS  Google Scholar 

  30. S.A.R. Horsley, Phys. Rev. A 84, 063822 (2011)

    Article  ADS  Google Scholar 

  31. S.A.R. Horsley, Phys. Rev. A 86, 023830 (2012)

    Article  ADS  Google Scholar 

  32. Brandenberger, H. Robert, arXiv:hep-th/0210165, 2002

  33. S. Weinberg, Rev. Mod. Phys. 61, 1–21 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  34. W. Heisenberg, Physics and Philosophy: The Revolution in Modern Science (Penguin Classics, New York, 2000)

    Google Scholar 

  35. F. Capasso, J.N. Munday, Casimir Physics: Lecture Notes in Physics, vol 834 (Springer, Berlin, 2011)

    Google Scholar 

  36. U. Leonhardt, W.M.R. Simpson, Phys. Rev. D 84, 081701 (2011)

    Article  ADS  Google Scholar 

  37. W.M.R. Simpson, Casimir force in a compressive transformation medium. Phys. Rev. A 88(6), 063852 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. R. Simpson .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Simpson, W.M.R. (2015). The Quantum Nature of the Casimir Force. In: Surprises in Theoretical Casimir Physics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-09315-4_3

Download citation

Publish with us

Policies and ethics