Advertisement

Climate Change Impacts on Soil Erosion: A High-Resolution Projection on Catchment Scale Until 2100

  • A. RoutschekEmail author
  • J. Schmidt
  • F. Kreienkamp
Conference paper

Abstract

The aim of this study was to quantify the impact of climate change on soil loss at catchment scale at high temporal and spatial resolution. Simulations are performed for three example catchments in West, North and East Saxony/Germany. The study is based on the A1B IPCC-scenario and model outputs of four models: ECHAM4-OPYC3 (general circulation model), WETTREG (statistical downscaling climate model), METVER (hydrological model for calculating daily initial soil moisture) and EROSION 3D as a process-based soil erosion model. Simulations were run for measured and projected single rainstorm events at a temporal resolution of 5 min. Soil loss was simulated for two future periods from 2041 to 2050 and 2091 to 2100. Results were compared to simulated soil loss based on 10 years of measured climate data from 1989 to 2007. Expected changes in land use, soil management due to changed crop rotation and shifted harvest date are taken into account in scenario studies. The results of the simulations with EROSION 3D allow to quantify the impacts of climate change on erosion rates. The impact of the expected increase of precipitation intensities leads to a significant increase of soil loss by 2050 and a partly decrease by 2100. The impacts of land use, soil management and soil properties on soil loss are higher than the effects of changed precipitation patterns.

Keywords

Climate change Soil erosion Soil erosion model Regional climate modeling 

References

  1. Arévalo SA, Schmidt J (2011) Modelling mud deposition patterns due to flash floods in urban areas. Z dt Ges Geowiss 162(4):443–451Google Scholar
  2. Bundesanstalt für Geowissenschaften und Rohstoffe (2005) Bodenkundliche Kartieranleitung. 5. Auflage, Hannover, 438 pGoogle Scholar
  3. Chmielewski F-M, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany 1961–2000. Agric Forest Meteorol 121:69–78CrossRefGoogle Scholar
  4. Enke W, Spekat A (1997) Downscaling climate model outputs into local and regional weather elements by classification and regression. Clim Res 8:195–207CrossRefGoogle Scholar
  5. Enke W, Deutschlaender Th, Schneider F, Küchler W (2005) Results of five regional climate studies applying a weather pattern based downscaling method to ECHAM4 climate simulations. Meteorol Z 14:247–257CrossRefGoogle Scholar
  6. Estrella N (2007) Räumliche und zeitliche Variabilität von phänologischen Phasen und Reaktionen im Zuge von Klimaverände-rungen. (Spatial and temporal variability of phenological events and responses due to climate change). Dissertation, TU MünchenGoogle Scholar
  7. Klik A, Zartl AS, Hebel B, Schmidt J (1998) Comparing RUSLE, EROSION 2D/3D, and WEPP soil loss calculations with four years of observed data. ASAE Paper No. 982055Google Scholar
  8. Klik A, Eitzinger J (2010) Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. J Agric Sci 148:529–541CrossRefGoogle Scholar
  9. Kreienkamp F, Spekat A, Lahmer G, Orlowski B, Gerstengarbe F-W, Schaller E, Jacob D (2008) Evaluierung und Synopse beobachteter und projizierter Klimate für Sachsen und Umgebung auf der Basis deutscher statistischer und dynamischer Regionalmodelle (REGKLIM). Abschlussbericht Im Auftrag des Sächsischen Landesamts für Umwelt, Landwirtschaft und Geologie AZ 13-8802.26/10/3Google Scholar
  10. Kreienkamp F, Spekat A, Enke W (2010) Erstellung von zeitlich hoch aufgelösten Szenarien. Im Auftrag der TU Bergakademie Freiberg, Bereich Boden- und Gewässerschutz, Auftragsnummer 1260-10Google Scholar
  11. Kreienkamp F, Baumgart S, Spekat A, Enke W (2011) Climate signals on the regional scale derived with a statistical method: relevance of the driving model’s resolution. Atmosphere 2:129–145Google Scholar
  12. Lal R (ed) (1998) Soil quality and soil erosion. CRC Press, Boca Raton, FLGoogle Scholar
  13. Michael A (2000) Anwendung des physikalisch begründeten Erosionsprognosemodells EROSION 2D/3DEmpirische Ansaetze zur Ableitung der Modellparameter. Dissertation TU Bergakademie Freiberg, Freiberger Forschungshefte, Reihe GeowissenschaftenGoogle Scholar
  14. Michael A, Schmidt J, Enke W, Deutschlaender Th, Malitz G (2005) Impact of expected increase in precipitation intensities on soil loss—results of comparative model simulations. Catena 61:155–164CrossRefGoogle Scholar
  15. Müller J (1987) Verdunstung landwirtschaftlicher Produktionsgebiete in ausgewählten Vegetationsabschnitten und deren statistische, modellmäßige und kulturbezogene Bewertung. Dissertation Martin-Luther-Universität Halle-WittenbergGoogle Scholar
  16. Mullan D, Favis-Mortlock D, Fealy R (2012) Addressing key limitations associated with medelling soil erosion under the impacts of future climate change. Agric Forest Meteorol 156(2012):18–30CrossRefGoogle Scholar
  17. Runoff to changes in precipitation and cover. Catena 61:131–154Google Scholar
  18. Nunes JP, Seixa J, Keizer JJ (2013) Modeling the response of within-storm runoff and erosion dynamics to climate change in two Metiterranean watersheds: a multi-model, multi-scale approach to scenario design and analyses. Catena 102:27–39CrossRefGoogle Scholar
  19. Schindewolf M, Schmidt J (2012) Parameterization of the EROSION 2D/3D soil erosion model using a small-scale rainfall simulator and upstream runoff simulation. Catena 91:47–55CrossRefGoogle Scholar
  20. Schmidt J (ed) (2000) Soil erosion—application of physically based soil erosion models. Springer, New YorkGoogle Scholar
  21. Schmidt J (1990) A mathematical model to simulate rainfall erosion. Catena (Suppl 19), 101–109Google Scholar
  22. Schmidt J (1996) Entwicklung und Anwendung eines physikalisch begründeten Simulationsmodells für die Erosion geneigter landwirtschaftlicher Nutzflaechen. In: Berliner Geographische Abhandlungen, Heft 61Google Scholar
  23. Schmidt JV, Werner M, Michael A (1999a) Application of the EROSION 3D model to the Catsop watershed, The Netherlands. Catena 418:449–456CrossRefGoogle Scholar
  24. Schmidt JV, Werner M, Michael A (1999b) Application of the EROSION 3D Model to the Catsop Watershed, The Netherlands. Catena 37:449–456CrossRefGoogle Scholar
  25. Spekat A, Enke W, Kreienkamp F (2007) Neuentwicklung von regional hoch aufgelösten Wetterlagen für Deutschland und Bereitstellung regionaler Klimaszenarios auf der Basis von globalen Klimasimulationen mit dem Regionalisierungsmodell WETTREG auf der Basis von globalen Klimasimulationen mit ECHAM5/MPI-OM T63L31 2010 bis 2100 für die SRES-Szenarios B1, A1B und A2. Forschungsprojekt im Auftrag des Umweltbundesamtes FuE-Vorhaben Förderkennzeichen 204 41 138Google Scholar
  26. Spekat A, Kreienkamp F, Enke W (2010) An impact-oriented classification method for atmospheric patterns. Phys Chem Earth 35(2010):352–359CrossRefGoogle Scholar
  27. Toy TJ, Foster GR, Renard KG (2002) Soil erosion: processes, prediction, measurement and control. Wiley, New YorkGoogle Scholar
  28. Turc L (1961) Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann Agron 12:13–49 (in French)Google Scholar
  29. Von Werner M (1995) GIS-orientierte Methoden der digitalen Reliefanalyse zur Modellierung von Bodenerosion in kleinen Einzugsgebieten. Dissertation am Fachbereich Geowissenschaften der Freien Universitaet BerlinGoogle Scholar
  30. Wendling U, Schellin H-G, Thomae M (1991) Bereitstellung von täglichen Informationen zum Wasserhaushalt des Bodens für die Zwecke der agrarmeteorologischen Beratung. Z Meteorol 41:468–475Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Technical University Freiberg, Soil and Water Conservation UnitFreibergGermany
  2. 2.Deutscher WetterdienstPotsdamGermany

Personalised recommendations