Skip to main content

Bio-inspired Adaptive Building Skins

  • Chapter
  • First Online:
Biotechnologies and Biomimetics for Civil Engineering

Abstract

How do living organisms capture, convert, store and process energy, water and sunlight? How does nature cool down, heat up, provide shade, and control light? Adaptability, the ability of a system to act in response to variations in environmental conditions often plays a key role in this context. Unlike living organisms, buildings are typically conceived as static, inanimate objects. Because a building’s surroundings and internal conditions are constantly changing, there is a lot to learn about how inspiration from nature can foster more adaptability of the façade for enhanced building performance. After highlighting the need for more adaptability in the built environment, this chapter reviews state-of-the-art examples of research concepts and design applications with bio-inspired adaptable solutions for the building envelope. All examples are in the scope of building physics and energy efficiency with a focus on improving indoor environmental quality. The chapter concludes with an outlook of design support methodologies that can potentially incite the practical uptake of bio-inspired adaptive building skins in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldersey-Williams H (2004) Towards biomimetic architecture. Nat Mater 3(5):277–279. doi:10.1038/nmat1119

  • Alston ME (2014) Energy adaptive glass matter. Architectural Eng Technol 3:115. doi:10.4172/2168-9717.1000115

    Google Scholar 

  • Aries MBC, Aarts MPJ, van Hoof T (2014) Daylight and health: a review of the evidence and consequences for the built environment. Lighting Res Technol (in press) doi:10.1177/1477153513509258

  • Badarnah L, Kadri U (2014) A methodology for the generation of biomimetic design concepts. Arch Sci Rev (in press) doi:10.1080/00038628.2014.922458

  • Badarnah L (2012) Towards the LIVING envelope: biomimetics for building envelope adaptation. PhD Thesis, Delft University of Technology

    Google Scholar 

  • Bakker LG, Hoes-Van Oeffelen ECM, Loonen RCGM, Hensen JLM (2014) User satisfaction and interaction with automated dynamic facades: a pilot study. Building Environ 78:44–52

    Google Scholar 

  • Baetens R, Jelle BP, Gustavsen A (2010) Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Solar Energ Mater Solar Cells 94(2):87–105. doi:10.1016/j.solmat.2009.08.021

    Article  Google Scholar 

  • Bastiaansen CWM, Schenning A, Debije MD, Broer DJ (2013) Nano-textured polymers for future architectural needs. J Facade Des Eng 1(1–2):97–104. doi:10.3233/FDE-130002

    Google Scholar 

  • Beatley T (2011) Biophilic cities—integrating nature into urban design and planning. Island Press, Washington DC

    Google Scholar 

  • Braun DH (2008) Bionisch Inspirierte Gebäudehüllen. PhD Thesis, Stuttgart University

    Google Scholar 

  • Bronsema B (2013a) Earth, wind & fire—natural air conditioning. PhD Thesis, Delft University of Technology

    Google Scholar 

  • Bronsema B (2013b) Earth, wind & fire—natural airconditioning [1] research objectives and methods. In: Proceedings of CLIMA 2013—the 11th REHVA World congress. Prague, Czech Republic

    Google Scholar 

  • Brownell B (2010) Transmaterial 3: a catalog of materials that redefine our physical environment. Princeton Architectural Press, New York

    Google Scholar 

  • Chalupnik MJ, Wynn DC, Clarkson PJ (2013) Comparison of Ilities for protection against uncertainty in system design. J Eng Des 24(12):814–829. doi:10.1080/09544828.2013.851783

  • Chen PY, McKitrrick J, Meyers MA (2012) Biological materials: functional adaptations and bioinspired designs. Prog Mater Sci 57(8):1492–1704

    Article  Google Scholar 

  • Dahl R (2013) Cooling concepts: alternatives to air conditioning for a warm World. Environ Health Perspect 121(1):18–25

    Article  Google Scholar 

  • Dawson C, Vincent JFV, Rocca AM (1997) How pine cones open. Nature 390(1997):668

    Article  Google Scholar 

  • De Wilde P, Tian W (2010) Predicting the performance of an office under climate change: a study of metrics, sensitivity and zonal resolution. Energ Build 42(10):1674–1684. doi:10.1016/j.enbuild.2010.04.011

    Article  Google Scholar 

  • Dosier GK (2011) Methods for making construction material using enzyme producing bacteria. US Patent: US 20110262640 A1

    Google Scholar 

  • Drake S (2007) The third skin: architecture, technology & environment. UNSW Press, Sydney

    Google Scholar 

  • Ednie-Brown P (2013) bioMASON and the speculative engagements of biotechnical architecture. Architectural Des 83(1):84–91. doi:10.1002/ad.1529

    Google Scholar 

  • Evans Ogden LJ (2014) Does green building come up short in considering biodiversity?: focus on a growing concern. Biosci 64(2):83–89

    Google Scholar 

  • Ferguson S, Siddiqi A, Lewis K, De Weck O (2007) Flexible and reconfigurable systems: nomenclature and review. In: Proceedings of ASME 2007—international design engineering technical conferences and computers and information in engineering conference, Las Vegas

    Google Scholar 

  • Fernandez ML, Rubio R, Gonzalez SM (2013) Architectural envelopes that interact with their environment. In: Proceedings of new concepts in smart cities: fostering public and private alliances (SmartMILE), 2013

    Google Scholar 

  • Fisk WJ, Rosenfeld AH (1997) Estimates of improved productivity and health from better indoor environments. Indoor Air 7:158–172

    Article  Google Scholar 

  • Foruzanmehr A, Vellinga M (2011) Vernacular architecture: questions of comfort and practicability. Build Res Inf 39(3):274–285. doi:10.1080/09613218.2011.562368

  • Foster JM (2011) A reward for bird-friendly buildings. NY times blog: green—energy, the environment and the bottom Line. Accessed 2 Nov 2011

    Google Scholar 

  • Gamage A, Hyde R (2012) A model based on biomimicry to enhance ecologically sustainable design. Architectural Sci Rev 55(3):224–235. doi:10.1080/00038628.2012.709406

  • Geiger J (2010) The living: surface tensions. Architectural Des 80(3):60–65

    MathSciNet  Google Scholar 

  • Gosztonyi S (2011) BioSkin—Bionische Fassaden: Potenziale Aus Der Bionik Für Adaptive Energieeffiziente Fassaden Der Zukunft. In: Proceedings of the 17th international Holzbau-forum, pp 1–14

    Google Scholar 

  • Gruber P (2011a) Biomimetics in architecture [Architekturbionik]. In: Gruber P, Bruckner D, Hellmich C, Schmiedmayer HB, Stachelberger H, Gebeshuber IC (eds) Biomimetics—materials, structures and processes, Berlin, Heidelberg, pp 127–148. doi:10.1007/978-3-642-11934-7

  • Gruber P (2011b) Biomimetics in architecture—architecture of life and buildings. Springer, Vienna

    Google Scholar 

  • Hatton BD, Wheeldon I, Hancock MJ, Kolle M, Aizenberg J, Ingber DB (2013) An artificial vasculature for adaptive thermal control of windows. Solar Energ Mater Solar Cells 117(October):429–436. doi:10.1016/j.solmat.2013.06.027

    Article  Google Scholar 

  • Hoes P, Trcka M, Hensen JLM, Hoekstra Bonnema B (2011) Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage. Energ Conver Manage 52(6):2442–2447

    Google Scholar 

  • Hofman M, Dujardin B (2008) European patent EP1644591: balcony that can be folded

    Google Scholar 

  • Holmes M, Hacker J (2007) Climate change, thermal comfort and energy: meeting the design challenges of the 21st century. Energ Build 39(7):802–814. doi:10.1016/j.enbuild.2007.02.009

  • International Energy Agency (2012) Energy technology perspectives 2012—pathways to a clean energy system. International Energy Agency, Paris

    Google Scholar 

  • Ip K, Lam M, Miller M (2010) Shading performance of a vertical deciduous climbing plant canopy. Build Environ 45(1):81–88. doi:10.1016/j.buildenv.2009.05.003

    Article  Google Scholar 

  • Jin Q, Overend M (2014) A prototype whole-life value optimization tool for façade design. J Build Perform Simul 7(3):217–232. doi:10.1080/19401493.2013.812145

  • Kasinalis C, Loonen RCGM, Cóstola D. Hensen JLM (2014) Framework for assessing the performance potential of seasonally adaptable facades using multi-objective optimization. Energ Build 79:106–113

    Google Scholar 

  • Kellert SR, Heerwagen J, Mador M (2011) Biophilic design: the theory, science and practice of bringing buildings to life. John Wiley and Sons, New Jersey

    Google Scholar 

  • Klem D (2009) Preventing bird—window collisions. Wilson J Ornithol 121(2):314–321

    Article  Google Scholar 

  • Klooster T, Boeing N, Davis S, Seeger A (2009) Smart surfaces: and their application in architecture and design. Birkhäuser, Basel

    Google Scholar 

  • Knaack U, Klein T, Bilow M, Auer T (2007) Façade—principles of construction. Birkhäuser Architecture, Berlin

    Google Scholar 

  • Knippers J, Speck T (2012) Design and construction principles in nature and architecture. Bioinspiration Biomimetics 7(1):015002. doi:10.1088/1748-3182/7/1/015002

  • Koch K, Bhusan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54(2):137–178. doi:10.1016/j.pmatsci.2008.07.003

    Article  Google Scholar 

  • Leydecker S, Kölbel M, Peters S (2008) Nano materials in architecture, interior architecture, and design. Birkhäuser, Basel

    Google Scholar 

  • Lienhard J, Schleicher S, Poppinga S, Masselter T, Milwich M, Speck T, Knippers J (2011) Flectofin: a hingeless flapping mechanism inspired by nature. Bioinspiration Biomimetics 6(4):045001. doi:10.1088/1748-3182/6/4/045001

  • Linn C (2014) Kinetic architecture: design for active envelopes. Images Publishing, Australia

    Google Scholar 

  • Loonen RCGM, Singaravel S, Trcka M, Cóstola D, Hensen JLM (2014) Simulation-based support for product development of innovative building envelope components. automat Constr 45:86–95

    Google Scholar 

  • Loonen RCGM (2014) Climate adaptive building shells. http://www.pinterest.com/CABSoverview/

  • Loonen RCGM, Trčka M, Hensen JLM (2011) Exploring the potential of climate adaptive building shells. In: Proceedings of building simulation 2011, pp 2148–2155

    Google Scholar 

  • Loonen RCGM, Trčka M, Cóstola D, Hensen JLM (2013) Climate adaptive building shells: state-of-the-art and future challenges. Renew Sustain Energy Rev 25(September):483–493. doi:10.1016/j.rser.2013.04.016

    Article  Google Scholar 

  • Magnone G, van der Linden K (2014) Forest microclimates: investigating the performance potential of vegetation at the building space scale. Build Environ 73:12–23. doi:10.1016/j.buildenv.2013.11.012

    Article  Google Scholar 

  • Mayoral E (2011) Growing architecture through Mycelium and agricultural waste. Int J Construc Environ 1(4):87–132

    Google Scholar 

  • Mazzoleni I (2010) Biomimetic envelopes. Disegnarecon 3(5):99–112

    Google Scholar 

  • McLeod RS, Hopfe CJ, Kwan A (2013) An Investigation into future performance and overheating risks in Passivhaus Dwellings. Build Environ 70:189–209. doi:10.1016/j.buildenv.2013.08.024

    Article  Google Scholar 

  • Meijer F, Itard L, Sunnika-Blank M (2009) Comparing European residential building stocks: performance, renovation and policy opportunities. Build Res Inf 37(5–6):533–551. doi:10.1080/09613210903189376

    Article  Google Scholar 

  • Menges A, Reicher S (2012) Material capacity: embedded responsiveness. Architectural Des 82(2012):52–59

    Google Scholar 

  • Minner K (2011) Moving homeostatic facade preventing solar heat gain. Archdaily. http://www.archdaily.com/?p=101578

  • Mlecnik E, Schütze T, Jansen SJT, de Vries G, Visscher HJ, van Hal A (2012) End-user experiences in nearly zero-energy houses. Energ Build 49:471–478. doi:10.1016/j.enbuild.2012.02.045

    Article  Google Scholar 

  • Montazeri H, Azizian R (2008) Experimental study on natural ventilation performance of one-sided wind catcher. Build Environ 43(12):2193–2202

    Article  Google Scholar 

  • Montazeri H, Blocken B, Janssen WD, van Hooff T (2013) CFD evaluation of new second-skin facade concept for wind comfort on building balconies: case study for the Park Tower in Antwerp. Build Environ 68:172–179. doi:10.1016/j.buildenv.2013.07.004

    Article  Google Scholar 

  • Moonen P, Defraeye T, Dorer V, Blocken B, Carmeliet J (2012) Urban physics: effect of the micro-climate on comfort, health and energy demand. Front Architectural Res 1(3):197–228. doi:10.1016/j.foar.2012.05.002

    Article  Google Scholar 

  • Ochoa CE, Aries MBC, van Loenen EJ, Hensen JLM (2012) Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort. Appl Energ 95:238–245. doi:10.1016/j.apenergy.2012.02.042

  • Ottelé M (2014) Green facades and roofs. In: Pacheco-Torgal F, Labrincha JA, Diamanti MV, Yu CP (eds) Biotechnologies and biomimetics for civil engineering, Springer, Berlin

    Google Scholar 

  • Pacheco-Torgal F (2014) Eco-efficient construction and building materials research under the EU framework programme Horizon 2020. Constr Build Mater 51(January):151–162. doi:10.1016/j.conbuildmat.2013.10.058

    Article  Google Scholar 

  • Pacheco-Torgal F, Jalali S (2011) Nanotechnology: advantages and drawbacks in the field of construction and building materials. Constr Build Mater 25(2):582–590. doi:10.1016/j.conbuildmat.2010.07.009

  • Park JJ, Dave B (2013) Bio-Inspired responsive façades. In: Proceedings of the 2nd central european symposium on building physics. Vienna, Austria

    Google Scholar 

  • Parkin IP, Palgrave RG (2005) Self-cleaning coatings. J Mater Chem 15:1689–1695

    Google Scholar 

  • Pedersen Zari M (2010) Biomimetic design for climate change adaptation and mitigation. Architectural Sci Rev 53(2):172–183. doi:10.3763/asre.2008.0065

  • Quesada G, Rousse D, Dutil Y, Badache M, Hallé S (2012) A comprehensive review of solar facades. Opaque solar facades. Renew Sustain Energy Rev 16(5):2820–2832. doi:10.1016/j.rser.2012.01.078

    Article  Google Scholar 

  • Ramponi R, Angelotti A, Blocken B (2014) Energy saving potential of night ventilation: sensitivity to pressure coefficients for different European climates. Appl Energ 123:185–195. doi:10.1016/j.apenergy.2014.02.041

    Article  Google Scholar 

  • Randl C (2008) Revolving architecture: a history of buildings that rotate, Swivel, and Pivot. Princeton Architectural Press, New york

    Google Scholar 

  • Reichert S, Menges A, Correa D (2014) Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput-Aided Des (in press) doi:10.1016/j.cad.2014.02.010

  • Rezaei D, Zare M (2011) Plants in arid climate as a pattern for bionic architecture in behavioral viewpoint. Can J Environ Constr Civil Eng 2(6):141–146

    Google Scholar 

  • Rotzetter ACC, Schumacher CM, Bubenhofer SB, Grass RN, Gerber LC, Zeltner M, Stark WJ (2012) Thermoresponsive polymer induced sweating surfaces as an efficient way to passively cool buildings. Adv Mater 24(39):5352–6. doi:10.1002/adma.201202574

  • Schleicher S, Lienhard J, Poppinga S, Speck T, Knippers J (2014) A methodology for transferring principles of plant movements to elastic systems in architecture. Comput-Aided Des. doi:10.1016/j.cad.2014.01.005

  • Silver MR, de Weck O (2007) Time-expanded decision networks: a framework for designing evolvable complex systems. Syst Eng 10(2):167–186

    Article  Google Scholar 

  • Singh A, Syal M, Grady SC, Korkmaz S (2010) Effects of green buildings on employee health and productivity. Am J Public Health 100(9):1665–8. doi:10.2105/AJPH.2009.180687

  • Solga A, Cerman Z, Striffler BF, Spaeth M, Barthlott W (2007) The dream of staying clean: lotus and biomimetic surfaces. Bioinspiration Biomimetics 2(4):S126–34. doi:10.1088/1748-3182/2/4/S02

  • Spiegelhalter T (2012) Plus-energy building—designing with exergy-entropy processes. In: Proceedings of PLEA2012 conference, opportunities, limits and needs towards an environmentally responsible architecture Lima, Perú

    Google Scholar 

  • Stegmaier T, Linke M, Planck H (2009) Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications. Philosophical Transactions. Ser A Math Phys Eng Sci 367(1894):1749–58. doi:10.1098/rsta.2009.0019

  • Šuklje T, Medved S, Arkar C (2013) An experimental study on a microclimatic layer of a bionic façade inspired by vertical greenery. J Bionic Eng 10(2):177–185. doi:10.1016/S1672-6529(13)60213-9

  • Taghizade K, Taraz M (2013) Designing a mobile facade using bionic approach. Am J Mater Eng Technol 1(2):22–29

    Google Scholar 

  • Taleghani M, Tenpierik M, van den Dobbelsteen A (2014) Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change. Renew Energ 63:486–497

    Article  Google Scholar 

  • Trame U (2001) Santiago Calatrava: Quadracci Pavilion, Milwaukee Art Museum. Editrice Compositori, Bologna

    Google Scholar 

  • Turner JS, Soar RC (2008) Beyond biomimicry: what termites can tell us about realizing the living building. In: Proceedings of the international conference on industrialized, intelligent construction (I3CON)

    Google Scholar 

  • Ürge-Vorsatz D, Novikova A (2008) Potentials and costs of carbon dioxide mitigation in the world’s buildings. Energ Policy 36(2):642–661. doi:10.1016/j.enpol.2007.10.009

  • Van Dronkelaar C, Cóstola D, Mangkuto RA, Hensen JLM (2014) Heating and cooling energy demand in underground buildings: potential for saving in various climates and functions. Energ Build 71:129–136. doi:10.1016/j.enbuild.2013.12.004

    Article  Google Scholar 

  • Van Hooff T, Blocken B, Aanen L, Bronsema B (2011) A venturi-shaped roof for wind-induced natural ventilation of buildings: wind tunnel and CFD evaluation of different design configurations. Build Environ 46(9):1797–1807

    Article  Google Scholar 

  • Van Renterghem T, Hornikx M, Forssen J, Botteldooren D (2013) The potential of building envelope greening to achieve quietness. Build Environ 61:34–44. doi:10.1016/j.buildenv.2012.12.001

    Article  Google Scholar 

  • Weaver J, Wood KL, Jensen D (2008) Transformation facilitators: a quantitative analysis of reconfigurable products and their characteristics. In: Proceedings of ASME 2008—international design engineering technical conferences & computers and information in engineering conference

    Google Scholar 

  • Webb M, Hertzsch E, Green R (2011) Modelling and optimization of a biomimetic facade based on animal fur. In: Proceedings of building simulation 2011

    Google Scholar 

  • Webb M, Aye L, Green R (2013) Investigating potential comfort benefits of biologically-inspired building skins. In: Proceedings of building simulation 2013, pp 2634–2641

    Google Scholar 

  • Wigginton M, Harris J (2002) Intelligent skins. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Wurm J (2013) Developing bio-responsive façades: BIQ House—the first pilot project. Arup J 2013(2):90–95

    Google Scholar 

  • Xie X, Liu CH, Leung DYC (2007) Impact of building facades and ground heating on wind flow and pollutant transport in street canyons. Atmos Environ 41(39):9030–9049. doi:10.1016/j.atmosenv.2007.08.027

    Article  Google Scholar 

  • Yamanashi T, Hatori T (2011) Bio skin urban cooling facade. Architectural Design 81(6):100–107

    Article  Google Scholar 

  • Yowell J (2011) Biomimetic building skin: a phenomological approach using tree bark as a model. MSc Thesis, University of Oklahoma

    Google Scholar 

  • Zare M, Falahat M (2013) Characteristics of reptiles as a model for bionic architecture. Adv Civil Environ Eng 01(3):124–135

    Google Scholar 

  • Zhai Z, Previtali JM (2010) Ancient vernacular architecture: characteristics categorization and energy performance evaluation. Energ Build 42(3):357–365. doi:10.1016/j.enbuild.2009.10.002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. G. M. Loonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Loonen, R.C.G.M. (2015). Bio-inspired Adaptive Building Skins. In: Pacheco Torgal, F., Labrincha, J., Diamanti, M., Yu, CP., Lee, H. (eds) Biotechnologies and Biomimetics for Civil Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-09287-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09287-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09286-7

  • Online ISBN: 978-3-319-09287-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics