Skip to main content

Basics of Construction Microbial Biotechnology

  • Chapter
  • First Online:
Biotechnologies and Biomimetics for Civil Engineering

Abstract

Construction Microbial Biotechnology is a new area of science and engineering that includes microbially-mediated construction processes and microbial production of construction materials. Low cost, sustainable, and environmentally-friendly microbial cements, grouts, polysaccharides, and bioplastics are useful in construction and geotechnical engineering. Construction-related biotechnologies are based on activity of different microorganisms: urease-producing, acidogenic, halophilic, alkaliphilic, denitrifying, iron- and sulfate-reducing bacteria, cyanobacteria, algae, microscopic fungi. The bio-related materials and processes can be used for the bioaggregation, soil biogrouting and bioclogging, biocementation, biodesaturation of water-satured soil, bioencapsulation of soft clay, biocoating, and biorepair of the concrete surface. Construction Microbial Biotechnology is progressing toward commercial products and large-scale applications. The biotechnologically produced materials and construction-related microbial biotechnologies have a lot of advantages over conventional construction materials and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Mukherjee A, Reddy MS (2010) Microbial concrete: way to enhance the durability of building structures. J Mater Civil Eng 23:730–734. doi:10.1061/(ASCE)MT.1943-5533.0000159

    Google Scholar 

  • Achal V, Mukherjee A, Reddy MS (2011) Effect of calcifying bacteria on permeation properties of concrete structures. J Ind Microbiol Biotechnol 38:1229–1234. doi:10.1007/s10295-010-0901-8

    Google Scholar 

  • Arunaye FI, Mwasha A (2011) On behavior of limited life geotextile materials for reinforcing embankment on soft ground. World J Eng 8:195–199. doi:10.1260/1708-5284.8.2.195

    Google Scholar 

  • Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28:404–409

    Google Scholar 

  • Bang S, Min SH, Bang SS (2011) Application of microbiologically induced soil stabilization technique for dust suppression. Int J Geo-Eng 3:27–37

    Google Scholar 

  • Barlaz MA, Staley BF, De Los Reyes III FL (2010) Anaerobic biodegradation of solid waste. In: Mitchell R, Gu JD (eds) Environmental microbiology, 2nd edn. Wiley, Hoboken, NJ, USA, pp 281–299

    Google Scholar 

  • Ben Rebah F, Prevost D, Tyagi RD, Belbahri L (2009) Poly-beta-hydroxybutyrate production by fast-growing rhizobia cultivated in sludge and in industrial wastewater. Appl Biochem Biotechnol 158:155–163

    Google Scholar 

  • Beun JJ, Dircks K, van Loosdrecht MCM et al (2006) Poly-β-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Res 36:1167–1180

    Google Scholar 

  • Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. J Biotechnol 65:127–161

    Google Scholar 

  • Burbank MB, Weaver TJ, Green TL, Williams BC, Crawford RL (2011) Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J 28:301–312. doi:10.1080/01490451.2010.499929

    Google Scholar 

  • Burbank MB, Weaver TJ, Williams BC, Crawford RL (2012a) Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by indigenous bacteria. Geomicrobiol J 29:389–395. doi:10.1080/01490451.2011.575913

    Google Scholar 

  • Burbank M, Weaver T, Lewis R, Williams T, Williams B, Crawford W (2012b) Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. J Geotech Geoenviron Eng 139:928–936. doi:10.1061/(ASCE)GT.1943-5606.0000781

    Google Scholar 

  • Castanier S, Le Métayer-Levrel G, Orial G., Loubière JF, Perthuisot JP (2000) Bacterial carbonatogenesis and applications to preservation and restoration of historic property. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art. the role of microbial communities in the degradation and protection of cultural heritage. Kluwer Academic/Plenum Publisher, New York, pp 203–218

    Google Scholar 

  • Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100:5996–6009

    Google Scholar 

  • Cheng L, Cord-Ruwisch R (2012) In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng 42:64–72. doi:10.1016/j.ecoleng.2012.01.013

    Google Scholar 

  • Cheng L, Cord-Ruwisch R (2013) Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture. J Ind Microbiol Biotechnol 40:1095–1104. doi:10.1007/s10295-013-1310-6

    Google Scholar 

  • Cheng L, Cord-Ruwisch R, Shahin MA (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50:1–10

    Google Scholar 

  • Christians S, Jose J, Schäfer U, Kaltwasser H (1991) Purification and subunit determination of the nickel-dependent Staphylococcus xylosus urease. FEMS Microbiol Lett 80:271–275

    Google Scholar 

  • Chu J, Ivanov V, Jia H, Chenghong G, Naeimi M, Tkalich P (2009a) Microbial geotechnical engineering for disaster mitigation and coastal management. In: Proceedings of WCCE-ECCE-TCCE joint conference: earthquake & tsunami, Istanbul, Turkey

    Google Scholar 

  • Chu J, Varaksin S, Klotz U, Mengé P (2009b) Construction processes. state-of-the-art-report. In: Proceedings of the 17th international conference on soil mechanics and geotechnical engineering, Alexandria, Egypt, 5–9 Oct 2009 vol 4, pp 3006–3135

    Google Scholar 

  • Chu J, Stabnikov V, Ivanov V (2012a) Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiol J 29:1–6

    Google Scholar 

  • Chu J, Indraratna B, Shuwang Yan S, Rujikiatkamjorn C (2012b) Soft soil improvement through consolidation: an overview. In: Proceedings of the international conference on ground improvement and ground control, pp. 251–280. doi:10.3850/978-981-07-3559-3103-0007

  • Chu J, Ivanov V, Stabnikov V (2013a) Microbial method for construction of aquaculture pond in sand. Géotechnique 63:871–875. doi:10.1680/geot.SIP13.P.007

    Google Scholar 

  • Chu J, He J, Ivanov V (2013b) Mitigation of liquefaction of saturated sand using biogas. Geotechnique 63:267–275. doi:10.1680/geot.SIP13.P.004

    Google Scholar 

  • Chu J, Ivanov V, Naeimi M, Stabnikov V, Liu HL (2014) Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech 9:277–285. doi:10.1007/s11440-013-0278-8

    Google Scholar 

  • Cordesman AH (2002) Terrorism, asymmetric warfare, and weapons of mass destruction: defending the U.S. homeland. Praeger Publishers, Westport

    Google Scholar 

  • Cuthbert MO, McMillan LA, Handley-Sidhu S, Riley MS, Tobler DJ, Phoenix VR (2013) A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation. Env Sci Technol 47:13637–13643. doi:10.1021/es402601g

    Google Scholar 

  • DeJong J, Fritzges M, Nusstein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenv Eng 32:1381–1392

    Google Scholar 

  • DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36:197–210

    Google Scholar 

  • DeJong JT, Soga K, Kavazanjian E et al (2013) Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique 63:287–301

    Google Scholar 

  • DeMarco S (2005) Advances in polyhydroxyalkanoate production in bacteria for biodegradable plastics. Basic Biotechnol eJ 1:1–4

    Google Scholar 

  • De Muynck W, Cox K, Verstraete W, De Belie N (2008a) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22:875–885

    Google Scholar 

  • De Muynck WD, Debrouwer D, De Belie ND, Verstraete W (2008b) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem Concr Res 38:1005–1014

    Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136

    Google Scholar 

  • De Muynck W, Verbeken K, De Belie N, Verstraete W (2012) Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Microbiol Biotechnol 97(3):1335–1347 doi:10.1007/s00253-012-3997-0

  • Dhami NK, Reddy MS, Mukherjee A (2012) Improvement in strength properties of ash bricks by bacterial calcite. Ecol Eng 39:31–35. doi:10.1016/j.ecoleng.2011.11.011

    Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2014) Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl Biochem Biotechnol 172:2552–2561 doi:10.1007/s12010-013-0694-0

  • Dosier GK (2013) Methods for making construction material using enzyme producing bacteria. US Patent App. 13/093,335, 2011

    Google Scholar 

  • Ehrlich HL (1999) Microbes as geologic agents: their role in mineral formation. Geomicrobiol J 16:135–153

    Google Scholar 

  • Eseller-Bayat E, Yegian MK, Alshawabkeh A, Gokyer S (2012) Prevention of liquefaction during earthquakes through induced partial saturation in sands. Geotechnical engineering: new horizons. IOS Press, Amsterdam, pp 188–194

    Google Scholar 

  • Fernandes P (2006) Applied microbiology and biotechnology in the conservation of stone culture heritage materials. Appl Microbiol Biotechnol 73:291–296

    Google Scholar 

  • FHWA-RD-01-156 (2001) Corrosion cost and preventive strategies in the United States, Report by CC Technologies Laboratories, Inc. to Federal Highway Administration. (FHWA), Office of Infrastructure Research and Development

    Google Scholar 

  • Fujita F, Redden GD, Ingram JC, Cortez MM, Ferris FG, Smith RW (2004) Strontium incorporation into calcite generated by bacterial ureolysis. Geochim Cosmochim Acta 68:3261–3270. doi:10.1016/j.gca.2003.12.018

    Google Scholar 

  • Fytili D, Zabaniotou A (2008) Utilization of sewage sludge in EU application of old and new methods—a review. Renew Sustain Energy Rev 12:116–140. doi:10.1016/j.rser.2006.05.014

    Google Scholar 

  • Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res 35:1980–1983. doi:10.1016/j.cemconres.2005.03.005

    Google Scholar 

  • Ghosh P, Mandal S, Pal S, Bandyopadhyaya G, Chattopadhyay BD (2006) Development of bioconcrete material using an enrichment culture of novel thermophilic anaerobic bacteria. Indian J Exp Biol 44:336–339

    Google Scholar 

  • Ghosh S, Biswas M, Chattopadhyay BD, Mandal S (2009) Microbial activity on the microstructure of bacteria modified mortar. Cem Concr Compos 31:93–98

    Google Scholar 

  • Gibert O, Cortina JL, de Pablo J, Ayora C (2013) Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage. Env Sci Pollut Res 20:7854–7862. doi:10.1007/s11356-013-1507-2

    Google Scholar 

  • Guo CH, Stabnikov V, Ivanov V (2010) The removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions. Bioresour Technol 101:3992–3999

    Google Scholar 

  • Hamdan N, Kavazanjian E, Rittman BE, Karatas I (2011) Carbonate mineral precipitation for soil improvement through microbial denitrification. In: Han J, Alzamora DA (eds) Geo-frontiers 2011: advances in geotechnical engineering. American Society of Civil Engineers, Dallas

    Google Scholar 

  • Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD (2003) Strain-specific ureolytic microbial calcium carbonate precipitation. Appl Env Microbiol 69:4901–4909

    Google Scholar 

  • Harkes MP, van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MCM (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36:112–117

    Google Scholar 

  • He J, Chu J, Ivanov V (2013) Mitigation of liquefaction of saturated sand using biogas. Geotechnique 63:267–275

    Google Scholar 

  • Imai H, Oaki Y (2010) Bioinspired hierarchical crystals. MRS Bull 35(2):138–144. doi:10.1557/mrs2010.634

    Google Scholar 

  • Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Env Sci Biotechnol 7:139–153

    Google Scholar 

  • Ivanov V, Kuang SL, Guo CH, Stabnikov V (2009) The removal of phosphorus from reject water in a municipal wastewater treatment plant using iron ore. J Chem Technol Biotechnol 84:78–82

    Google Scholar 

  • Ivanov V (2010) Environmental microbiology for engineers. CRC Press, Taylor & Francis Group, Boca Raton, p 402

    Google Scholar 

  • Ivanov V, Stabnikov V, Hung YT (2012) Screening and selection of microorganisms for the environmental biotechnology process. In: Yung-Tse H, Lawrence KW, Nazih KS (eds) Handbook of environment and waste management: air and water pollution control. World Scientific Publishing Co., Inc., Singapore, pp 1137–1149

    Google Scholar 

  • Ivanov V, Chu J, Stabnikov V, Li B (2014) Strengthening of soft marine clay using biocementation. Marine Georesour Geotechnol. doi:10.1080/1064119X.2013.877107

    Google Scholar 

  • Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Piñar-Larrubia G, Rodriguez-Gallego M, González-Muñoz MT (2008) Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int Biodeterior Biodegrad 62:352–363

    Google Scholar 

  • Jin M, Rosario W, Walter E, Calhoun DH (2004) Development of a large-scale HPLC-based purification for the urease from Staphylococcus leei and determination of subunit structure. Protein Expr Purif 34:111–117

    Google Scholar 

  • Jonkers HM (2007) Self healing concrete: a biological approach. In: van der Zwaag S (ed) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, Berlin, pp. 195–204

    Google Scholar 

  • Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36:230–235

    Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69. doi:10.1016/j.biotechadv.2009.09.002

    Google Scholar 

  • Kenyon WJ, Esch SW, Buller CS (2005) The curdlan-type exopolysaccharide produced by Cellulomonas flavigena KU forms part of an extracellular glycocalyx involved in cellulose degradation. Antonie Van Leeuwenhoek 87:143–148

    Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Proc Biochem 40:607–619

    Google Scholar 

  • León-Martínez FM, de Cano-Barrita PFJ, Lagunez-Rivera L, Medina-Torres L (2014) Study of nopal mucilage and marine brown algae extract as viscosity-enhancing admixtures for cement based materials. Constr Build Mater 53:190–202. doi:10.1016/j.conbuildmat.2013.11.068

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8

    Google Scholar 

  • Li M, Guo H, Cheng X (2011) Application of response surface methodology for carbonate precipitation production induced by a mutant strain of Sporosarcina pasteurii. In: Geo-Frontiers, ASCE, pp 4079–4088

    Google Scholar 

  • Li P, Qu W (2012) Microbial carbonate mineralization as an improvement method for durability of concrete structures. Adv Mater Res 365:280–286

    Google Scholar 

  • Lisdiyanti P, Suyanto E, Ratnakomala S, Fahrurrozi, Sari MN, Gusmawati NF (2011) Bacterial carbonate precipitation for biogrouting. In: Proceedings of the national symposium on ecohydrology, Jakarta, pp 204–211

    Google Scholar 

  • Lowell WL, Rohwedder WK (1974) Poly-beta-hydroxyalkanoate from activated sludge. Env Sci Technol 8:576–579

    Google Scholar 

  • Lu Y (2007) Advance on the production of polyhydroxyalkanoates by mixed cultures. Front Biol China 2:1673–3509

    Google Scholar 

  • Madigan MT, Martinko JM, Stahl D, Clark DP (2012) Brock biology of microorganisms (13th Edn). Pearson, San Francisco

    Google Scholar 

  • Mayer G, Sarikaya M (2002) Rigid biological composite materials: structural examples for biomimetic design. Exp Mech 42:395–403

    Google Scholar 

  • Mergaert J, Anderson C, Wouters A, Swings J, Kerster K (1992) Biodegradation of polyhydroxyalkanoates. FEMS Microbiol Rev 103:317–322

    Google Scholar 

  • Mitchell AC, Ferris FG (2005) The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence. Geochim Cosmochim Acta 69:4199–4210

    Google Scholar 

  • Mitchell JK, Santamarina JC (2005) Biological considerations in geotechnical engineering. J Geotech Geoenv Eng ASCE 131:1222–1233

    Google Scholar 

  • Montoya BM, DeJong JT, Boulanger RW, Wilson D W, Gerhard R, Ganchenko A, Chou JC (2012) Liquefaction mitigation using microbial induced calcite precipitation. In: GeoCongress, pp 1918–1927

    Google Scholar 

  • Moosbrugger RE, Wentezel MC, Ekama GA, Marais GV (1993) Weak acid/bases and pH control in anaerobic systems: a review. Water South Africa 19:1–10

    Google Scholar 

  • Mun KJ (2007) Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Constr Build Mater 21:1583–1588. doi:10.1016/j.conbuildmat.2005.09.009

    Google Scholar 

  • Neville AM (1996) Properties of concrete, 4th edn. Pearson Higher Education, Prentice Hall, New Jersey

    Google Scholar 

  • Novakova D, Sedlacek I, Pantucek R, Stetina V, Svec P, Petras P (2006) Staphylococcus equorum and Staphylococcus succinus isolated from human clinical specimens. J Med Microbiol 55:523–528

    Google Scholar 

  • Ogbobe O, Essien KS, Adebayo A (1998) A study of biodegradable geotextiles used for erosion control. Geosynth Int 5:545–553

    Google Scholar 

  • van der Ruyt M, van der Zon W (2009) Biological in situ reinforcement of sand in near-shore areas. Geotech Eng 162:81–83

    Google Scholar 

  • van Loosdrecht MCM, Pot MA, Heijnen JJ (1997) Importance of bacterial storage polymers in bioprocesses. Water Sci Technol 33:41–47

    Google Scholar 

  • van Loosdrecht MCM, Kleerebezem R, Muyzer G, Jian Y, Johnson K (2008) Process for selecting polyhydroxyalkanoate (PHA) producing micro-organisms. WO/2009/153303. International application No.: PCT/EP2009/057571, 18 June 2008

    Google Scholar 

  • van Paassen L, Ghose R, van der Linden T, van der Star W, van Loosdrecht M (2010) Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J Geotech Geoenv Eng 136:1721–1728

    Google Scholar 

  • van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40:157–166. doi:10.1016/j.cemconres.2009.08.025

    Google Scholar 

  • Pacheco-Torgal F, Jalali S (2011) Nanotechnology: advantages and drawbacks in the field of construction and building materials. Constr Build Mater 25:582–590. doi:10.1016/j.conbuildmat.2010.07.009

    Google Scholar 

  • Pacheco-Torgal F, Jalali S, Labrincha J, John VM (2012) Eco-efficient concrete using industrial wastes: a review. Mater Sci Forum 730–732, 581–586. doi:58110.4028/www.scientific.net/MSF.730-732.581

  • Pacheco-Torgal F, Labrincha JA (2013a) Biotech cementitious materials: Some aspects of an innovative approach for concrete with enhanced durability. Constr Build Mater 40:1136–1141. doi:10.1016/j.conbuildmat.2012.09.080

    Google Scholar 

  • Pacheco-Torgal F, Labrincha JA (2013b) Biotechnologies and bioinspired materials for the construction industry: an overview. Int J Sustain Eng. doi:10.1080/19397038.2013.844741

    Google Scholar 

  • Pacheco-Torgal F, Jalali S (2013) Eco-efficient construction and building materials. Springer, London, p 247 doi:10.1007/978-0-85729-892-8

  • Park JH, Yuu J, Jeon HY (2010) Green geosynthetics applications to sustainable environmental fields from the viewpoint of degradability. In: Proceedings of the international symposium and exhibition on geotechnical and geosynthetics engineering: challenges and opportunities on climate change, Bangkok, pp. 43–50, 7–8 Dec (2010)

    Google Scholar 

  • Parra RR, Medina VF, Conca JL (2009) The use of fixatives for response to a radiation dispersal devise attack – a review of the current (2009) state-of-the-art. J Env Radioact 100:923–934

    Google Scholar 

  • Pei R, Liu J, Wang S, Yang M (2013) Use of bacterial cell walls to improve the mechanical performance of concrete. Cem Concr Compos 39:122–130. doi:10.1016/j.cemconcomp.2013.03.024

    Google Scholar 

  • Plank J (2003) Applications of biopolymers in construction engineering. In: Steinbüchel A (ed) Biopolymers, V.10. General aspects and special applications. Wiley, Weinheim

    Google Scholar 

  • Plank J (2004) Application of biopolymers and other biotechnological products in building material. Appl Microbiol Biotechnol 66:1–9

    MathSciNet  Google Scholar 

  • Portilho M, Matioli G, Zanin GM, de Moraes FF, Scamparini AR (2006) Production of insoluble exopolysaccharide Agrobacterium sp. (ATCC 31749 and IFO 13140). Appl Biochem Biotechnol 129–132:864–869

    Google Scholar 

  • Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using microorganisms. ACI Mater J 98:3–9

    Google Scholar 

  • Ramesh BNG, Anitha N, Rani HKR (2010) Recent trends in biodegradable products from biopolymers. Adv Biotechnol 9:30–34

    Google Scholar 

  • Raut SH, Sarode DD, Lele SS (2014) Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures. World J Microbiol Biotechnol 30:191–200. doi:10.1007/s11274-013-1439-5

    Google Scholar 

  • Rebata-Landa V, Santamarina JC (2012) Mechanical effects of biogenic nitrogen gas bubbles in soils. J Geotech Geoenv Eng 138:128–137

    Google Scholar 

  • Reddy CS, Ghai R, Rashmi C, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Google Scholar 

  • Reddy S, Rao M, Aparna P, Sasikala C (2010) Performance of standard grade bacterial (Bacillus subtilis) concrete. Asian J Civ Eng (Build Hous) 11:43–55

    Google Scholar 

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Muñoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Env Microbiol 69:2182–2193. doi:10.1128/AEM.69.4.2182-2193.2003

    Google Scholar 

  • Roeselers G, van Loosdrecht MCM (2010) Microbial phytase-induced calcium-phosphate precipitation– a potential soil stabilization method. Folia Microbiol 55:621–624

    Google Scholar 

  • Ross N, Villemur R, Deschenes L, Samson R (2001) Clogging of limestone fracture by stimulating groundwater microbes. Water Res 35:2029–2037

    Google Scholar 

  • Sarda D, Choonia HS, Sarode DD, Lele SS (2009) Biocalcification by Bacillus pasteurii urease: a novel application. J Ind Microbiol Biotechnol 36:1111–1115

    Google Scholar 

  • Sarayu K, Iyer NR, Murthy AR (2014) Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials—a review. Appl Biochem Biotechnol. doi:10.1007/s12010-013-0686-0

    Google Scholar 

  • Sarikaya M (1994) An introduction to biomimetics: a structural viewpoint. Microsc Res Tech 37:360–375

    Google Scholar 

  • Sathya A, Bhuvaneshwari P, Niranjan G, Vishveswaran M (2013) Influence of bio admixture on mechanical properties of cement and concrete. Asian J Appl Sci. doi:10.3923/ajaps.2013

    Google Scholar 

  • Seagren EA, Aydilek AH (2010) Bioremediated geomechanical processes. In: Mitchell R, Gu J-D (eds) Environmental Microbiology, 2nd edn. Wiley, Hoboken, pp 319–348

    Google Scholar 

  • Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81:615–628

    Google Scholar 

  • Siddique R, Chahal NK (2011) Effect of ureolytic bacteria on concrete properties. Constr Build Mater 25:3791–3801. doi:10.1016/j.conbuildmat.2011.04.010

    Google Scholar 

  • Stabnikov VP, Ivanov VN (2006) The effect of various iron hydroxide concentrations on the anaerobic fermentation of sulfate-containing model wastewater. Appl Biochem Microbiol 42:284–288

    Google Scholar 

  • Stabnikov V, Chu J, Naeimi M, Ivanov V (2011) Formation of water-impermeable crust on sand surface using biocement. Cem Concr Res 41:1143–1149

    Google Scholar 

  • Stabnikov V, Chu J, Myo AN, Ivanov V (2013a) Immobilization of sand dust and associated pollutants using bioaggregation. Water Air Soil Pollut 224:1631. doi:10.1007/s11270-013-1631-0

    Google Scholar 

  • Stabnikov V, Chu J, Ivanov V, Li Y (2013b) Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World J Microbiol Biotechnol 29:1453–1460. doi:10.1007/s11274-013-1309-1

    Google Scholar 

  • Stewart TL, Fogler HS (2001) Biomass plug development and propagation in porous media. Biotechnol Bioeng 72:353–363

    Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Google Scholar 

  • Sudesh K, Abe H (2010) Practical guide to microbial polyhydroxyalkanoates. Smithers Rapra Technology, UK, p 160

    Google Scholar 

  • Taponen S, Björkroth J, Pyörälä S (2008) Coagulase-negative staphylococci isolated from bovine extramammary sites and intramammary infections in a single dairy herd. J Dairy Res 75:422–429

    Google Scholar 

  • Tsang PH, Li G, Brun YV, Freund LB, Tang JX (2006) Adhesion of single bacterial cells in the micronewton range. Proc Natl Acad Sci USA 103:11435–11436

    Google Scholar 

  • UNEP (2009) Converting waste agricultural biomass into a resource. Compendium of technologies, United Nations Environment Programme, p 441

    Google Scholar 

  • Vahabi A, Ramezanianpour AA, Sharafi H, Shahbani HZ, Vali H, Noghabil KA (2014) Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials. J Basic Microbiol 53:1–7. doi:10.1002/jobm.201300560

    Google Scholar 

  • Vempada SR, Reddy SSP, Rao MVS, Sasikala C (2011) Strength enhancement of cement mortar using microorganisms-an experimental study. Int J Earth Sci Eng 4:933–936

    Google Scholar 

  • Volova TG (2004) Polyhydroxyalkanoates - plastic materials of the 21st Century. Nova Publishers, Hauppauge, p 282

    Google Scholar 

  • Warren LA, Maurice PA, Parmar N, Ferris FG (2001) Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol J 18:93–115. doi:10.1080/01490450151079833

    Google Scholar 

  • Wang JY, De Belie N, Verstraete W (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39:567–577. doi:10.1007/s10295-011-1037-1

    Google Scholar 

  • Webster A, May E (2006) Bioremediation of weathered-building stone surfaces. Trends Biotechnol 24:255–260. doi:10.1016/j.tibtech.2006.04.005

    Google Scholar 

  • Weil MH, DeJong JT, Martinez BC, Mortensen BM, Waller JT (2012) Seismic and resistivity measurements for real-time monitoring of microbially induced calcite precipitation in sand. ASTM Geotech Test J 35:330–341

    Google Scholar 

  • Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24:417–423

    Google Scholar 

  • Weaver TJ, Burbank M, Lewis A, Lewis R, Williams B (2011) Bio-induced calcite, iron, and manganese precipitation for geotechnical engineering applications. In: Geo-Frontiers: Adv Geotech Eng ASCE, 211:3975–3983. doi:10.1061/41165(397)406)

  • Wiktor V, Jonkers H (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 33:763–770

    Google Scholar 

  • Wright DT, Oren A (2005) Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiol J 22:27–53

    Google Scholar 

  • Xia H, Hu T (1991) Effects of saturation and back pressure on sand liquefaction. J Geotech Eng 117:1347–1362

    Google Scholar 

  • Yang IC, Li Y, Park JK, Yen TF (1993) Subsurface application of slime - forming bacteria in soil matrices. In: Proceedings of the 2nd international symposium in situ and on site bioreclamation, April 1993, San Diego, CA. Lewis Publishers, Boca Raton

    Google Scholar 

  • Yang J, Savidis S, Roemer M (2004) Evaluating liquefaction strength of partially saturated sand. J Geotech Geoenv Eng 130:975–979

    Google Scholar 

  • Yao L, Yang J, Sun J, Cai L, He L, Huang H, Song R, Hao Y (2011) Hard and transparent hybrid polyurethane coatings using in situ incorporation of calcium carbonate nanoparticles. Mater Chem Phys 129:523–528

    Google Scholar 

  • Yegian M, Eseller-Bayat E, Alshawabkeh A, Ali S (2007) Induced-partial saturation for liquefaction mitigation: experimental investigation. J Geotech Geoenv Eng 133:372–380

    Google Scholar 

  • Yuan F, Xiao H, Wu J, Ying WF, Yu YP, Chi HX (2013) Effect of carboxylmethyl cellulose sulfate (CMC-S) on the hydration process of cement paste. Adv Mater Res 838–841:123–126

    Google Scholar 

  • Yu PH, Chua H, Huang A, Ho KP (1999) Conversion of food industrial wastes into bioplastics with municipal activated sludge. Macromol Symp 148:415–424

    Google Scholar 

  • Yu J (2006) Production of biodegradable thermoplastic materials from organic wastes. US Patent 7,141,400. Accessed 28 Nov 2006

    Google Scholar 

  • Zell C, Resch M, Rosenstein R, Albrecht T, Hertel C, Götz F (2008) Characterization of toxin production of coagulase-negative staphylococci isolated from food and starter cultures. Int J Food Microbiol 127:246–251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ivanov, V., Chu, J., Stabnikov, V. (2015). Basics of Construction Microbial Biotechnology. In: Pacheco Torgal, F., Labrincha, J., Diamanti, M., Yu, CP., Lee, H. (eds) Biotechnologies and Biomimetics for Civil Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-09287-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09287-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09286-7

  • Online ISBN: 978-3-319-09287-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics