Skip to main content

Biotechnological Aspects of Soil Decontamination

  • Chapter
  • First Online:
Biotechnologies and Biomimetics for Civil Engineering

Abstract

Soils have been subjected to several contaminants that vary in concentration and composition. Soil pollution causes significant damage to the environment and human health as a result of their mobility and solubility. Significant progress has been made in regulating soil pollution, with a parallel development of methodologies for soil assessment and remediation. The selection of most appropriate soil and sediment remediation method depends on the site characteristics, concentration, type of pollutants to be removed, and the end use of the contaminated medium. This chapter provides the developing biotechnological aspects of soil decontamination. The study also reviews other available remediation options, which includes physical, chemical, and thermal technologies. All these technologies may be used in conjunction with one another to reduce the contamination to an acceptable level, and may offer potential technical solution to most soil pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Google Scholar 

  • Adams JA, Reddy KR (2003) Extent of benzene biodegradation in saturated soil column during air sparging. Ground Water Moint Remediat 23:85–94

    Google Scholar 

  • Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG (2003) Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): Chromate-plant interaction in hydroponics and solid media studied using XAS. Environ Sci Technol 37:1859

    Google Scholar 

  • Alloway BJ, Jackson AP (1991) The behaviour of heavy metals in sewage-sludge amended soils. Sci Total Environ 100:151–176

    Google Scholar 

  • Al-Nazar H, Kaschl A, Schulz R, Romheld V (2005) Effects of thallium fractions in the soil and pollution origin in thallium uptake by hyperaccumulator plants: a key factor for assessment of phytoextraction. Int J Phytorem 7:55–67

    Google Scholar 

  • Alt F, Messerschmidt J, Weber G (1998) Investigation of low molecular weight platinum species in grass. Anal Chim Acta 359:65–70

    Google Scholar 

  • Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415

    Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636

    Google Scholar 

  • Appenroth KJ, Bischoff M, Gabrys H, Stoeckel J, Walckzak T (2000) Kinetics of chromium (V) formation and reduction in fronds of duckweed Spirodela polyrhiza-a low frequency EPR study. J Inorg Biochem 78:235–242

    Google Scholar 

  • Arduini I, Masoni A, Ercoli L (2006) Effects of high chromium applications on Miscanthus during the period of maximum growth. Environ Exp Bot 58:234–243

    Google Scholar 

  • Asensi A, Bennet F, Brooks R, Robinson B, Stewart R (1999) Copper uptake studies on Erica andevalensis, a metal-tolerant plant from Southwestern Spain. Commun Soil Sci Plant Anal 30(11, 12):1615–1624

    Google Scholar 

  • Babula P, Supalkova V, Adam V, Havel L, Beklova M, Sladky Z, Kizek R (2007) An influence of cisplatin on the cell culture of Nicotiana tabacum BY-2. Plant Soil Environ 53:350–354

    Google Scholar 

  • Babula P, Vojtech A, Radka O, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213

    Google Scholar 

  • Baker AJM, Reeves RD, McGrath SP (1991) In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants—a feasibility study. In: Hinchee RE, Olfenbuttel RF (eds) In situ bioreclamation. Butterworth-Heinemann Publishers, Stoneham, pp 539–544

    Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 155–177

    Google Scholar 

  • Baker RS, Moore AT (2000) Optimizing the effectiveness of in situ bioventing. Pollut Eng 32(7):44–47

    Google Scholar 

  • Bani A, Echevarria G, Sulce S, Morel JL, Mullai A (2007) In situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89

    Google Scholar 

  • Banuelos GS, Airua HA, WU L, Guo X, Akohouy S, Zambrowski S (1997) Selenium induced growth reduction in Brassicae landraces considered for phytoremediation. Ecotoxicol Environ Saf 36:282–287

    Google Scholar 

  • Barbosa RMT, deAlmeida A-AF, Mielke MS, Longuercio LL, mangabeira PAO, Gomes FP (2007) A physiological analysis of Genipa americana L.: a potential phytoremediator tree for chromium polluted watersheds. Environ Exp Bot 61:264–271

    Google Scholar 

  • Barcelo J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2(3):333–344

    Google Scholar 

  • Basic N, Salamin C, Keller N, Galland N, Besnard G (2006) Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochem Syst Ecol 34:667–677

    Google Scholar 

  • Basta NT, Gradwohl R, Sneyhen KL, Schroder JL (2001) Chemical iimmobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. J Environ Qual 30:1222–1230

    Google Scholar 

  • Baumann A (1885) Das verhalten von zinksalzen gegen pflanzen und im boden. Landwirtscha Verss 3:1–53

    Google Scholar 

  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282

    Google Scholar 

  • Berazain R, de la Fuente V, Rufo L, Rodriguez Nuria, Amils R, Diez-Garretas B, Sanchez-Mata D, Asensi A (2007a) Nickel localization in tissues of different hyperaccumulator species of euphorbiaceae from ultramafic areas of Cuba. Plant Soil 293:99–106

    Google Scholar 

  • Berazain R, de la Fuente V, Sanchez-Mata D, Rufo L, Rodriguez N, Amils R (2007b) Nickel localization on tissues of hyperaccumulator species of Phyllanthus L. (Euphorbiaceae) from ultramafic areas of Cuba. Biol Trace Elem Res 115:67–86

    Google Scholar 

  • Berken A, Mulholland MM, LeDuc DL, Terry N (2002) Genetic engineering of plants to enhance selenium phytoremediation. Crit Rev Plant Sci 21:567–582

    Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals—using plants to clean up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  • Bhattacharyya P, Chakraborty A, Chakrabarti K, Tripathy S, Powell MA (2005) Chromium uptake by rice and accumulation in soil amended with municipal solid waste compost. Chemosphere 60:1481–1486

    Google Scholar 

  • Bilek F (2004) Prediction of ground water quality affected by acid mine drainage to accompany in situ remediation. Appl Earth Sci 113:B31–B42

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkhov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Google Scholar 

  • Bolan NS, Adriano DC, Naidu R (2003) Role of phosphorus in immobilization and bioavailability of heavy metals in the soil-plant system. Rev Environ Contam Toxicol 177:1–44

    Google Scholar 

  • Boonyapookana B, Parkplan P, Techapinyawat S, DeLaune RD, Jugsujinda A (2005) Phytoaccumulation of lead by sunflower (Helianthus annus), tobacco (Nicotiana tabaccum), and (Vetiveria zizanioides). J Environ Sci Heal A 40:117–137

    Google Scholar 

  • Borovicka J, Randa Z, Jelinek E, Kotrba P, Dunn CE (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section lepidella. Mycol Res 111(11):1339–1344

    Google Scholar 

  • Boyajian G, Carriera LH (1997) Phytoremediation : a clean transition from laboratory to marketplace. Natur Biotechnol 15:127–128

    Google Scholar 

  • Bradl H, Xenidis A (2005) Remediation techniques. In: Bradl HB (ed) Heavy metals in environment, pp 165–261. Elsevier Ltd, London

    Google Scholar 

  • Brooks RR (1977) Copper and cobalt uptake by Haumanniastrum species. Plant Soil 48:541–544

    Google Scholar 

  • Brooks RR (1997) Plants that hyperaccumulate heavy metals. C.A.B. International, Wallingford, pp 88–105

    Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and Bladder campion for zinc and cadmium-contaminated soil. J Environ Qual 23:1151–1157

    Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationship for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Google Scholar 

  • Caille N, Swanwick S, Zhao FJ, McGrath SP (2004) Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilization. Environ Pollut 132:113–120

    Google Scholar 

  • Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic-enhanced photoremediation of soils: status and opportunities. Chemosphere 93:626–636

    Google Scholar 

  • Castelo-Grande T, Augusto PA, Monteiro P, Estevej AM, Barbosa D (2010) Remediation of soil contaminated by pesticides: a review. Int J Environ Anal Chem 90(3):438–467

    Google Scholar 

  • Castelo-Grande T, Augusto PA, Barbosa D (2005) Removal of pesticides from soil by superficial extraction- a preliminary study. Chem Eng J 111:167–171

    Google Scholar 

  • Chandra Sekhar K, Kamala CT, Chary NS, Balaram V, Garcia G (2005) Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58:507–514

    Google Scholar 

  • Chaney RL, Angle JS, Baker AJM, Li JM (1998) Method for phytomining of nickel, cobalt, and other metal from soil. U.S. Patent # 5, 711, 784

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metal. Curr Opin Biotechnol 8:279–284

    Google Scholar 

  • Chaney RL, Chen KY, Li Y-M, Angle JS, Baker AJM (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil. doi:10.1007/s11104-008-9664-7

  • Chang P, Kim K-W, Yoshida S, Kim S-Y (2005) Uranium accumulation of crop plants enhanced by citric acid. Environ Geochem Health 27:529–538

    Google Scholar 

  • Chen BD, Jakobsen I, Roos P, Borggaard OK, Zhu YG (2005) Mycorrhiza and root hairs enhance acquisition of Phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytol 165:591–598

    Google Scholar 

  • Chen HM, Zheng CR, Tu C, Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    Google Scholar 

  • Chu W, Chan KH (2003) The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics. Sci Total Envir 307(1–3):83–92

    Google Scholar 

  • Clemente R, Almela C, Bernal PM (2006) A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ Pollut 143(3):397–406

    Google Scholar 

  • Clemente R, Walker DJ, Bernal MP (2005) Uptake of heavy metals and as by B. juncea grown in contaminated soil in Aznalcollar (Spain): the effect of soil amendments. Environ Pollut 138:46–58

    Google Scholar 

  • Clemente R, Walker JD, Roig A, Bernal PM (2003) Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcollar (Spain). Biodegradation 14:199–205

    Google Scholar 

  • Conesa MH, Faz A, Arnaldos R (2006) Initial Studies for the phytostabilization of a mine tailing from the Cartagena–La Union Mining District (SE Spain). Chemosphere 66(1):38–44

    Google Scholar 

  • Cravotto G, Carlo, S, Tumiatti V, Roggero C, Bremner HD (2005) Degradation of persistent organic pollutants by Fenton's reagent facilitated by microwave or high intensity ultrasound. Environ Technol 26:721–724

    Google Scholar 

  • Cravotto G, Carlo, S, Tumiatti V, Roggero CM (2007) Decontamination of soil containing POPs by the combined action of solid Fenton-like reagents and microwaves. Chemosphere 69:1326–1329

    Google Scholar 

  • Cruiz- Jimenez G, Peralta-Videa JR, de la Rosa G, Meitzner G, Parsons JG, Gardea-Torresdey JL (2005) Effect of sulfate on selenium uptake and chemical speciation in Convolvulus arvensis L. Environ Chem 2:100–107

    Google Scholar 

  • Cunningham SD, Anderson TA, Schwab P, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(3):715–719

    Google Scholar 

  • Dahmani-Muller H, van Oort F, Gélie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

    Google Scholar 

  • Davies FT Jr, Puryear JD, Newton RJ, Egilla JN, Saraivag JA (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). Plant Physiol 158:777–786

    Google Scholar 

  • Davis MA, Pritchard SG, Boyd RS, Prior SA (2001) Developmental and induced responses of nickel- based and organic defenses of the nickel-hyperaccumulating shrub Psichotria douarrei. New Phytol 150:49–58

    Google Scholar 

  • De la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168

    Google Scholar 

  • Dec J, Bollag JM (1994) Use of plant material for the decontamination of water polluted with phenols. Biotech Bioeng 44:1132–1139

    Google Scholar 

  • Dermatas D, Meng X (2003) Utilisation of fly ash for stabilisation/solidification of heavy metal contaminated soils. Eng Geo 70(3–4):377–394

    Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field application. J Hazard Mater 152:1–31

    Google Scholar 

  • Diele F, Notarnicola F, Sgura I (2002) Uniform air velocity field for a bioventing system design: some numerical results. Int J Eng Sci 40(11):1199–1210

    Google Scholar 

  • Do Nascimento CWA, Xing B (2006) Phytoextraction a review on enhanced metal availability and plant accumulation. Scienta Agricola (Piracicaba, Brazil) 3(3):299–311

    Google Scholar 

  • Dong J, Wu FB, Huang RG, Zang GP (2007) A chromium-tolerant plant growing in cr-contaminated land. Int J Phytoremediation 9:167–179

    Google Scholar 

  • Drazic G, Mihalovic N, Lolic M (2006) Cadmium concentration in Medicago sativa seedlings treated with salicylic acid. Biol Plant 50:239–244

    Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Google Scholar 

  • Dushenkov D (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Google Scholar 

  • Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol 32:802–806

    Google Scholar 

  • Ensley BD (2000) Rational for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean- up the environment. Wiley, New York, pp 3–12

    Google Scholar 

  • Escarre J, Lefebre C, Gruber W, Leblanc M, Lipart J, Riviere Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and non metalliferous sites in the miditerranean area: implications for phytoremediation. New Phytol 145:429–437

    Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soils and ground water, technology evaluation report, TE-97-01. Ground Water Remediation Technologies Analysis Center, Pittsburgh, P.A

    Google Scholar 

  • Evans CS, Asher C, Johnson CM (1968) Isolation of dimethyl diselenide and other volatile selenium compounds from Astragalus racemosus (Pursh.). Aust J Biol Sci 21:13–20

    Google Scholar 

  • Faucon M-P, Shutcha N, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36

    Google Scholar 

  • Feng D, Lorenzen L, Aldrich C, Mare PW (2001) Ex- situ diesel contaminated soil washing with mechanical methods. Miner Eng 14(9):1093–1100

    Google Scholar 

  • Fenus TJ, MacNeil JH (2003) Hyperaccumulation of cadmium by Helianthus annuus. In: Abstract of the proceedings of the 225th ACS national meeting, New Orleans, LA, pp 23–27

    Google Scholar 

  • Ferro AM, Sims RC, Bugbee B (1994) Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil. J Environ Qual 23:272–279

    Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7(4):415–432

    Google Scholar 

  • Fletcher JS, Hegde RS (1995) Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31:3009–3016

    Google Scholar 

  • Flores-Tavizon E, Alarcon-Herrera MT, Gonzalez Elizondo S, Olguin EJ (2003) Arsenic tolerating plants from mine sites and hot springs in the semi arid region of Chihuahua Mexico. Acta Biotechnol 23:113–119

    Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediater of arsenic-contaminated soils. Sci Total Environ 284:27–35

    Google Scholar 

  • Frerot H, Lefèbvre C, Gruber W, Collin C, Dos Santos A, Escarre J (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65

    Google Scholar 

  • Friberg L, Nordberg GF, Vouk VB (1986) Handbook on the toxicology of metals, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Google Scholar 

  • Gardea-Torresdey JL, de la Rosa G, Peralta-Videa JR (2004a) Use of phytofiltration technologies in the removal of heavy metals: a review. Pure Appl Chem 76(4):801–813

    Google Scholar 

  • Gardea-Torresdey JL, Peralta-Videa JR, de La Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by x-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810

    Google Scholar 

  • Gardea-Torresdey JL, Peralta-Videa JR, Montes M, deLa Rosa G, Corral-Diaz B (2004b) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour Technol 92(3):229–235

    Google Scholar 

  • Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510

    Google Scholar 

  • George CE, Lightsey GR, Jun I, Fan JY (1992) Soil decontamination via microwave and radio-frequency covolatilisation. Environ Prog 11:216–219

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by product. Appl Ecol Environ Res 3(1):1–18

    Google Scholar 

  • Gomez-Lahoz C, Rodriguez-Maroto JM, Wilson DJ (1995) Soil clean up by insitu aeration XXII. Impact of natural soil organic matter on clean up rates. Sep Sci Technol 30:659–682

    Google Scholar 

  • Gonzalez RC, Gonzalez-Chavez MCA (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144(1):84–92

    Google Scholar 

  • Goodson CC, Parker DR, Amrhein C, Zhang Y (2003) Soil selenium uptake and root system development in plant taxa differing in Se- accumulating capability. New Phytol 159:391–401

    Google Scholar 

  • Haimi J (2000) Decomposer animals and bioremediation of soils. Environ Pollut 107:233–238

    Google Scholar 

  • Hambuckers A, Dotreppe O, Hornick JL, Istasse L, Dufrasne I (2008) Soil applied selenium effects on tissue selenium concentrations in cultivated and adventitious grassland and pasture plant species. Soil Sci Plant Anal 39:800–811

    Google Scholar 

  • Han FXX, Sridhar BBM, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to B. juncea. New Phytol 162:489–499

    Google Scholar 

  • Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10:691–695

    Google Scholar 

  • Hazardous Waste Consultant (1996) Remediating Soil and sediment contaminated with heavy metals, Nov/Dec. Elsevier science, Netherlands

    Google Scholar 

  • Heaton ACP, Rugh CL, Wang N, Meagher RB (1998) Phytoremediation of mercury and methyl mercury polluted soils using genetically engineered plants. J Soil Contam 74:497–510

    Google Scholar 

  • Hoffmann G (1983) Relationships between critical levels of pollutants in soils, fodder, and crops, (In German.). Landwirtsch Forsch Sonderh 39:130–152

    Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32(13):2004–2008

    Google Scholar 

  • Huang JW, Chen J, Berti WB, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and ttranslocation. New Phytol 134:75–84

    Google Scholar 

  • Jain SK, Vasudevan P, Jha NK (1989) Removal of some heavy metals from polluted water by aquatic plants: studies on duckweed and water velvet. Biol Wastes 28(2):115

    Google Scholar 

  • Jiang LY, Shi WY, Yang XE, Fu CX, Chen WG (2002) Hyperaccumulators in mining area. Chinese J Appl Ecol 13(7):906–908

    Google Scholar 

  • Karavaiko GI, Rossi G, Agates AD, Groudev SN, Avakyan ZA (1988) Biogeotechnology of metals: manual. Center for International Projects GKNT, Moscow

    Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotech Adv 28:61–69

    Google Scholar 

  • Keller C, Diallo C, Cosio N, Basic N, Galland N (2006) Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field function. Plant Biol 33:673–684

    Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Mgmt 71:95–255

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Google Scholar 

  • Kim SK, Park CB, Koo YM, Yun HS (2003) Biosorption of cadmium and copper ions by Trichoderma reesei RUT C30. J Ind Eng Chem 9:403–406

    Google Scholar 

  • Kinnersely AM (1993) The role of phytochelates in plant growth and productivity. Plant Growth Regul 12:207–217

    Google Scholar 

  • Kirk I, Klironomos I, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455–465

    Google Scholar 

  • Knabel DB, Vestal JR (1992) Effects of intact rhizosphere microbial communities on the mineralization of surfactants in surface soils. Can J Microbiol 38:643–653

    Google Scholar 

  • Knasmuller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, God R, Kundi M (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant aioassay. Mutat Res 420:37–48

    Google Scholar 

  • Kologziej M, Baranowska I, Matyja A (2007) Determination of platinum in plant samples by voltammetric analysis. Electro-analysis 19:1585–1589

    Google Scholar 

  • Kral’ova K, Masarovicova E (2003) Hypericum perforatum L. and Chamomilla recutita (L.) rausch.—accumulators of some toxic metals. Pharmazie 58(5):359–359

    Google Scholar 

  • Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickl. Nature 379:635–638

    Google Scholar 

  • Krishnaraj S, Dan TV, Saxena PK (2000) A fragment solution to soil remediation. Int J Phytorem 2:117–132

    Google Scholar 

  • Krishnaraj S, Saxena PK, Perras MR, Michel R (1999) Method of using Pelargonium species as hyperaccumulators for remediating contaminated soil. PCT/CA9801027 Int Appl 1–20

    Google Scholar 

  • Kumar PBAN, Motto H, Raskin I (1995a) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29(5):1239–1245

    Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995b) Phytoextraction –the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Google Scholar 

  • Lamb AE, Anderson CWN, Haverkamp RG (2001) The induced accumulation of gold in the plants Brassica juncea, Berkheya codii and Chicory. Chem New Zealand 65(2):34–36

    Google Scholar 

  • Leblanc M, Robinson BH, Petit D, Deram A, Brooks RR (1999) The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Econ Geol 94:109–114

    Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel Samie M, Chiang CY, Tagmount A, DeSouza M, Neuhierl B, Bock A, Caruso J, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Google Scholar 

  • Li Y-M, Chaney RL, Reeves RD, Angle JS, Baker AJM (2006) Thlaspi caerulescens sub species for Cd and Zn recovery. US Patent No.7049, 492. Date issued-23 May

    Google Scholar 

  • Liu D, Jiang W, Liu C, Xin C, How W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard (Brassica juncea L.). Bioresour Technol 71:273–277

    Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Google Scholar 

  • Long XX, Yang XE, Ye ZQ, Ni WZ, Shi WY (2002) Differences of uptake of and accumulation of zinc in four species of Sedum. Acta Botanica Sinica 44:152–157

    Google Scholar 

  • Luo L, Lou LP, Cui XY, Wu BB, Hou J, Xun B, Xu XH, Chen YX (2011) Sorption and desorption of pentachlorophenol to black carbon of three different origins. J Hazard Mater 185:639–646

    Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Google Scholar 

  • Macnair MR (2002) Within and between population genetic variations for zinc accumulation in Arabidopsis halleri. New Phytol 155(1):9–66

    Google Scholar 

  • Madejon P, Murillo JM, Maranon T, Lepp NW (2007) Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste. Chemosphere 67:20–28

    Google Scholar 

  • Mains D, Craw D, Rufaut CG, Smith CMS (2006a) Phytostabilization of gold mine tailings, New Zealand. Part 1: plant establishment in alkaline saline substrate. Int J Phytorem 8(2):131–147

    Google Scholar 

  • Mains D, Craw D, Rufaut CG, Smith CMS (2006b) Phytostabilization of gold mine tailings from New Zea-land. Part 2: experimental evaluation of arsenic mobiliza- tion during revegetation. Int J Phytorem 8(2):163–183

    Google Scholar 

  • Makridis C, Pateras D, Amberger A (1996) Thallium pollution risk to food chain from cement plant. Fresenius Environ Bull 5:643–648

    Google Scholar 

  • Malaisse F, Gregoire J, Morrison RS, Reeves RD (1979) Copper and cobalt in vegetation of Fungurume, Shaba Province, Zaire. Oikos 33:472–478

    Google Scholar 

  • Mangabeira PAO, Labejof L, Lamperti A, deAlmeida AAF, Oliveira AH, Escaig F, Severo MIG (2004) Accumulation of chromium in roots tissues of Eichhornia crassipes (Mart.) Solms. In Cachoeira river-Brazil. Appl Surf Sci 231(232):497–501

    Google Scholar 

  • Marris E (2006) Putting the carbon back: black is the New Green. Nature 442:624–626

    Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Google Scholar 

  • Melendo M, Benítez E, Nogales R (2002) Assessment of the feasibility of endogeneous Mediterranean species for phytoremediation of Pb-contaminated areas. Fresenius Environ Bull 11:1105–1109

    Google Scholar 

  • Minguzzi C, Vergnano O (1948) II cotenuto di nichel nelle ceneri di Alyssum bertolonii. Atti Soc Tosc Sci Nat 55:49–74

    Google Scholar 

  • Msuya FA, Brooks RR, Anderson CWN (2000) Chemically-induced uptake of gold by root crops: its significance for phytomining. Gold Bull 33(4):134–137

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (1999a) On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil. Environ Prog 18(1):50–54

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Mulligan CN, Galvez-Cloutier R, Renaud N (1999b) Biological leaching of copper mine residues by Aspergillus niger. Presented at AMERICANA 1999, Pan-American Environment Trade Show and Conference, Montreal, Canada, pp 24–26

    Google Scholar 

  • Nathanail CP, Earl N (2001) Human health risk assessment: guidelines values and magic numbers. In: Hester RE, Harrison RM (eds) Assessment and reclamation of contaminated land. Royal Society of Chemistry, Cambridge, pp 85–102

    Google Scholar 

  • Neumann PM, DeSouza MP, Pickering IJ, Terry N (2003) Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell Environ 26:897–905

    Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Google Scholar 

  • Newman LA, Strand SE, Choe N, Duffy J, Ekuan G (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    Google Scholar 

  • Padmavathiamma PK, Loretta YM (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126

    Google Scholar 

  • Park G, Shin HS, Ko SO (2005) A laboratory and pilot study of thermally enhanced soil vapor extraction method for the removal of semi-volatile organic contaminants. J Environ Sci Health Part Am 40:881–897

    Google Scholar 

  • Pazos M, Rosales E, Alcantara T, Gomez J, Sanaroman MA (2010) decontamination of soils containing PAHs by electroremediation, a review. J Hazard Mater 177:1–11

    Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qui GL (2009) The remediation of heavy metals contaminated sediments. J Hazard Mater 161:633–640

    Google Scholar 

  • Perrier N, Colin F, Jaffre T, Ambrosi JP, Rose J, Bottero JY (2004) Nickel speciation in Sebertia acuminate, a plant growing on a lateritic soil of New Caledonia. CR Geosci 336:567–577

    Google Scholar 

  • Peters RW (1999) Chelant extraction of heavy metals from contaminated Soils. J Hazard Mater 66:151–210

    Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21(6):539–566

    Google Scholar 

  • Pollard J, Cizdziel J, Stave K, Reid M (2007) Selenium concentrations in water and plant tissues of a newly formed arid wetland in Las Vegas. Nevada Env Monit Assess 135:447–457

    Google Scholar 

  • Prasad VMN, Frietas HMO (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321

    Google Scholar 

  • Rajput VS, Higgins AJ, Singley ME (1994) Cleaning of excavated soil contaminated with hazardous organic compounds by washing. Water Environ Res 66:819–827

    Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from environment. Curr Opin Biotechnol 8:221–226

    Google Scholar 

  • Reed DT, Tasker IR, Cunnane JC, Vandegrift GF (1992) In: Vandgrift GF, Reed DT, Tasker IR (eds) Environmental remediation removing organic and metal ion pollutants. Am Chem Soc, Washington DC, pp 1–9

    Google Scholar 

  • Reeves RD, Brooks R (1983) Hyperaccumulation of lead and zinc by two metallophytes from a mining area in Central Europe. Environ Pollut 31:277–287

    Google Scholar 

  • Reeves RD, Baker AJM (1984) Studies on metal uptake by plants from serpentine and non serpentine populations of Thlaspi goesingense Halacsy (Crucifera). New Phytol 98:191–204

    Google Scholar 

  • Reeves RD, Brooks RR, Macfarlane RM (1981) Nickel uptake by Californian Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray (Brassicaceae). Am J Bot 68:708–712

    Google Scholar 

  • Renoux AY, Sarrazin M, Hawari J, Sunahara GI (2000) Transformation of 2,4,6-trinitrotoluene in soil in the presence of the earthworm eisenia andrei. Environ Toxicol Chem 19:1473–1480

    Google Scholar 

  • Riddle SG, Tran HH, Dewitt JG, Andrews JC (2002) Field, laboratory, and x-ray absorption spectroscopic studies of mercury accumulation by water hyacinths. Environ Sci Technol 36:1965

    Google Scholar 

  • Rizzi L, Petruzzelli G, Poggio G, Vigna G (2004) Soil physical changes and plant availability of zn and pb in a treatability test of phytostabilization. Chemosphere 57(9):1039–1046

    Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkma JH, Gregg PEH (1997a) The potential of the high- biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997b) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Google Scholar 

  • Roper JC, Dec J, Bollag J (1996) Using minced horseradish roots for the treatment of polluted waters. J Environ Qual 25:1242–1247

    Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium- geobotany, biochemistry, toxicity and nutrition. Academic Press, New York

    Google Scholar 

  • Rout GR, Samantary S, Das P (1999) Chromium, nickel and zinc tolerance in Leucaena leucocephala (K8). Silvae Genet 48:151–157

    Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phtoremediation. Nature Biotechnol 16:925–928

    Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36(21):4676–4680

    Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995a) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–475

    Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995b) Mechanism of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1426–1433

    Google Scholar 

  • Sari A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164:1004–1011

    Google Scholar 

  • Schnoor JL (1997) Phytoremediation: technical and organisatoric issues, key factors. Ground-Water Remediation Technologies Analysis Center, Pittsburgh

    Google Scholar 

  • Scullion J (2006) Remediating polluted soils. Naturwissenschaften 93:51–65

    Google Scholar 

  • Scullion J, Malik A (2000) Earthworm effects on aggregate stability, organic matter composition and disposition, and their relationships. Soil Biol Biochem 32:119–126

    Google Scholar 

  • Sebastiani L, Scebba F, Tognetti R (2004) Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides x maximowiczii) and I-214 (P. x euramericana) exposed to industrial waste. Environ Exp Bot 52:79–88

    Google Scholar 

  • Sekhar KC, Kamala CT, Chary NS, Sastry ARK, Rao TN, Vairamani M (2004) Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. J Hazard Mater 108:111–117

    Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2008) Remediation techniques for contaminated soil. Environ Enging Managt J 7(4):379–387

    Google Scholar 

  • Sheoran AS, Sheoran V, Choudhary RP (2010) Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: a review. Miner Eng 23(14):1073–1100

    Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214

    Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2012) Phytoremediation technologies for the reclamation of organic and inorganic polluted soils and water: a review. Environ Res J 6(4/5):1–23

    Google Scholar 

  • Shu WS, Lan CY, Zhang ZQ, Wong MH (2000) Use of vetiver and other three grasses for revegetation of Pb/Zn Mine tailings at Lechang, Guangdong Province: field experiment. In: 2nd international vetiver conference, Bangkok, Thailand

    Google Scholar 

  • Sikdar SK, Grosse D, Rogut I (1998) Membrane technologies for remediating contaminated soils: a critical review. J Membrane Sci 151:75–85

    Google Scholar 

  • Singer AC, van der Gast CJ, Thompson IP (2005) Perspectives and vision for strain selection in bioaugmentation. Trends Biotech 23:74–77

    Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128–135

    Google Scholar 

  • Smith RAH, Bradshaw AD (1992) Stabilisation of toxic mine wastes by the use of tolerant plant populations. Trans Inst Min Metall Sect A 81:230–237

    Google Scholar 

  • Smrkolj P, Osvald M, Osvald J (2007) Selenium uptake and species distribution in Seliniumaseolus vulgaris seeds obtained by two different cultivations. Eur Food Res Technol 225:233–237

    Google Scholar 

  • Song SQ, Zhou X, Wu H, Zhou YZ (2004) Application of municipal garbage compost on revegetation of tin tailings dams. Rural Eco-Environ 20(2):59–61

    Google Scholar 

  • Srivastava M, Ma LQ, Contruva JA (2005) Uptake and distribution of selenium in different fern species. Int. J Phytorem 7:33–42

    Google Scholar 

  • Sui H, Li X, Jiang B, Huang G (2007) Simulation of remediation of multiple organic contaminats system by bioventing. Huagong Xuebo (Chinese Edition). 58:1025–1031

    Google Scholar 

  • Suko T, Fujikawa T, Miyazaki T (2006) Transport phenomena of volatile solute in soil during bioventing technology. J ASTM Int 3:374–379

    Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Engineer 18:647–658

    Google Scholar 

  • Suthersan SS (1997) Remediation engineering: design concepts. Lewis Publishers, Boca Raton

    Google Scholar 

  • Tang J, Zhu W, Kookana R, Arata K (2013) Characteristics of biochar and its applications in remediation of contaminated soils. J Biosci Bioeng 116(6):653–659

    Google Scholar 

  • Tang SR, Huang CY, Zhu ZX (1997) Commelina communis L.: copper hyperaccumulator found in Anhui Province of China. Pedosphere 7(3):207–210

    Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed A (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    Google Scholar 

  • Urlings LGCM (1990) In situ cadmium removal-full scale remedial action of contaminated soil. In: International symposium on hazardous waste treatment: treatment of contaminated soil, air, waste association and US.EPA Risk education laboratory, Cincinnati, Ohio, 5–8 Feb 1990

    Google Scholar 

  • USEPA (1998) Bioventing. Office of the Underground Storage Tank U.S. Environmental Protection Agency, Publication EPA, 510-B-95-007

    Google Scholar 

  • USEPA (1994) Selection of control technologies for remediation of soil contaminated with arsenic, cadmium, chromium, lead or mercury. Revised Draft Engineering Bulletin, Jan 31

    Google Scholar 

  • USEPA (1996) Engineering bulletin: technology alternatives for the remediation of soils contaminated with arsenic, cadmium, chromium, mercury and lead. U.S. Environmental Protection Agency, Office Of Emergency And Remedial Response, Cincinnati, OH

    Google Scholar 

  • Van denhove H (2013) Phytoremediation options for radioactively contaminated sites evaluated. Ann Nucl Energy 62:596–606

    Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575

    Google Scholar 

  • Vidali M (2001) Bioremediation, An overview. Pure Appl Chem 73:1163–1172

    Google Scholar 

  • Vinterhalter B, Vinterhalter D (2005) Nickel hyperaccumulation in shoot cultures of Alyssum narkgrafii. Biol Plant 49:121–124

    Google Scholar 

  • Wan QF, Deng DC, Bai Y, Xia CQ (2012) Phytoremediation and electrokinetic remediation of uranium contaminated soils: a review. He-Huaxue yu Fangshe Huaxue. J Nucl Radiochem 34:148–156

    Google Scholar 

  • Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012) Remediation of mercury contaminated sites- a review. J Hazard Mater 221–222:1–18

    Google Scholar 

  • Wang S, Catherine NM (2004) An evaluation of surfactant technology in remediation of ctaminated soil. Chemosphere 57:1079–1089

    Google Scholar 

  • Wenzel WW, Adrino DC, Salt D, Smith R (1999) Phytoremediation: a plant-microbe-based remediation system. In: Adrino DC, Bollag JM, Frankenberger WT, Sims RC (eds) Bioremediation of contaminated soil, pp 456–508. Agronomy Monograph no. 37, Madison

    Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffre T, Johns R, Mcintyre T, Wojcik M, Tukiendorf A (2005) Cadmium uptake, localization and detoxification in Zea mays. Biol Plant 49:237–245

    Google Scholar 

  • Williams GM (1988) Integrated studies into ground water pollution by hazardus wastes. In: Gronow JR, Scho-field AN, Jain RK (eds) Land disposal of hazardous waste, engineering and environmental issues. Horwood Ltd. Chichester

    Google Scholar 

  • Woelders J (1998) Sanirengsmogelijkheden Cadmium: In situ Reiniging Van Cadmium houdede zandground. In Cadmium: Vooromen impact en sanering. Lisec, Genk, Belgium

    Google Scholar 

  • Wong MH (1982) Metal co-tolerance to copper, lead and zinc in Festuca rubra. Environ Res 29:42–47

    Google Scholar 

  • Wood P (2001) Remediation methods for contaminated land. In: Hester RE, Harrison RM (eds) Assessment and reclamation of contaminated land. Issues in environmental science and technology. pp 115–139. Royal Society f Chemistry, Cambridge

    Google Scholar 

  • Xue SG, Chen YX, Reeves RD, Lin Q, Fernando DR (2004) Mangenese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaeae). Environ Pollut 131:393–399

    Google Scholar 

  • Yang X, Baligar DC, Martens DC, Clark RB (1996) Plant tolerance to nickel toxicity: I. Influx, transport, and accumulation of nickel in four species. J Plant Nutr 19:73–85

    Google Scholar 

  • Yang XE, Long XX, Ni WZ (2002) Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulting plants. Plant Nutr Fertilizer Sci 8(1):8–15

    Google Scholar 

  • Yang ZY, Yuan JG, Xin GR, Chang HT, Wong MH (1997) Germination, growth and nodulation of Sesbania rostrata grown in Pb/Zn mine tailings. Environ Manage 21:617–622

    Google Scholar 

  • Ye ZH, Baker AJM, Wong MH, Willis AJ (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytol 136:469–480

    Google Scholar 

  • Ye ZH, Wong MH, Baker AJM, Willis AJ (1998) Comparison of biomass and metal uptake between two populations of Phragmites australis grown in flooded and dry conditions. Ann Bot 80:363–370

    Google Scholar 

  • Yong-pisanphop J, Kruatrachue M, Pokethitiyook P (2005) Toxicity and accumulation of lead and chromium in Hydrocotyle umbellate. J Environ Biol 26:79–89

    Google Scholar 

  • Yu X-Z, Gu J-D (2008) The role of EDTA in Phytoextraction of hexavalent and trivalent chromium by two willow trees. Ecotoxicology 17:143–152

    Google Scholar 

  • Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31

    Google Scholar 

  • Zhu YL, Zayed AM, Quian JH, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344

    Google Scholar 

  • Zou JH, Wang M, Jiang WS, Liu DH (2006) Chromium accumulation and its effect on other mineral elements in amaranthus viridis L. Acta Biol Crac Ser Bot 48:7–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sheoran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sheoran, V., Sheoran, A. (2015). Biotechnological Aspects of Soil Decontamination. In: Pacheco Torgal, F., Labrincha, J., Diamanti, M., Yu, CP., Lee, H. (eds) Biotechnologies and Biomimetics for Civil Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-09287-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09287-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09286-7

  • Online ISBN: 978-3-319-09287-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics