Skip to main content

Bio-inspired, Flexible Structures and Materials

  • Chapter
  • First Online:
Biotechnologies and Biomimetics for Civil Engineering

Abstract

This chapter discusses the potential of biomimetics in formfinding and the development of structural systems based on constant or reversible elastic deformation. The existence of high strength elastic materials are the preconditions for the technical realisation of such elastic structures. Therefore, this chapter will start by introducing elastic building materials and biomimetic abstraction techniques individually before bringing the two together by presenting case studies which successfully combined both aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlquist A, Kampowski T, Oliyan Torghabehi O, Menges A, Speck T (2014) Development of a digital framework for the computation of complex material and morphological behavior of biological and technological systems. Computer-Aided Design, special issue: material ecologies, available online. http://dx.doi.org/10.1016/j.cad.2014.01.013

  • Ashby MF (2005) Materials selection in mechanical design. MRS Bulletin

    Google Scholar 

  • De Focatiis DSA, Guest SD (2002) Deployable membranes designed from folding tree leaves. Philos Trans R Soc Lond, Ser A: Math, Phy Eng Sci 360(1791):227–238

    Google Scholar 

  • Fertis D (2006) Nonlinear Structural Engineering. With Unique Theories and Methods to Solve Effectively Complex Nonlinear Problems

    Google Scholar 

  • Furuya H, Satou Y (2008) Deployment and retraction mechanisms for spinning solar sail membrane. In: AIAA structures, structural dynamics, and materials conference, AIAA-2008-2051, pp 1–10

    Google Scholar 

  • Gas S, Druesedau H, Hennike J (1985) IL 31 Bambus—Bamboo. Karl Krämer Verlag, Stuttgart

    Google Scholar 

  • Gruber P (2011) Biomimetics in architecture [architekturbionik] architecture of life and buildings. Springer, Berlin

    Book  Google Scholar 

  • Jenkins CH (2005) Compliant structures in nature and engineering. Wit Pr/Computational Mechanics. Southampton, Boston

    Google Scholar 

  • Kniese L (2012) Vorrichtung zur Aufnahme von Kräften, mit einer flexiblen Aussenhaut (Device for taking up forces, with a flexible outer skin). European Patent Office, 02.05.2012, EP 000001316651 A2

    Google Scholar 

  • Knippers J (2013) From model thinking to process design. AD Architectural Design 02(2013):74–81

    Article  Google Scholar 

  • Knippers J, Speck T (2012) Design and construction principles in nature and architecture. Bioinspir Biomim 7:1–10

    Google Scholar 

  • Knippers J, Cremers J, Gabler M, Lienhard J (2011a) Construction manual for polymers + membranes. Institut für internationale Architektur-Dokumentation, München

    Google Scholar 

  • Knippers J, Lienhard J, Masselter T, Poppinga S, Schleicher S, Speck T (2011b) Gelenkloser, stufenlos verformbarer Klappmechanismus (Hingeless, infinitely deformable folding mechanism). European Patent Office, 11.05.2011, EP 2320015 A2

    Google Scholar 

  • Kobayashi H, Daimaruya M, Vincent JFV (2000) Folding/unfolding manner of tree leaves as deployable structures. In: Pellegrino S, Guest SD (eds) IUTAM-IASS symposium on deployable structure : theory and applications. Kluwer Academic Pub., London, pp 211–220

    Google Scholar 

  • Liang H, Mahadevan L (2009) The shape of a long leaf. Proc Natl Acad Sci 106(52):22049–22054

    Google Scholar 

  • Lienhard J, Poppinga S, Schleicher S, Masselter T, Speck T, Knippers J (2009) Abstraction of plant movements for deployable structures in architecture. In: Thibaut B (ed) Proceedings of the 6th plant biomechanics international conference, Ecofog, Cayenne, French Guyana, pp 389–397

    Google Scholar 

  • Lienhard J, Poppinga S, Schleicher S, Speck T, Knippers J (2010) Elastic architecture: nature inspired pliable structures. In: Brebbia CA (ed) Design & Nature V: Comparing Design in Nature With Science and Engineering. WIT Press, Southampton, Boston, pp 469–477

    Chapter  Google Scholar 

  • Lienhard J, Schleicher S, Poppinga S, Masselter T, Milwich M, Speck T, Knippers J (2011) Flectofin: a hinge-less flapping mechanism inspired by nature. Bioinspir Biomim 6:045001

    Article  Google Scholar 

  • Lienhard J, Alpermann H, Gengnagel C, Knippers J (2013a) Active Bending, a Review on structures where bending is used as a self-formation process. Int J Space Struct 28(3&4):187–196

    Article  Google Scholar 

  • Lienhard J, Ahlquist S, Menges A, Knippers J (2013b) Finite element modelling in integral design strategies of form- and bending-active hybrid structures. In: Bletzinger K-U, Kröplin B, Onate E (eds) Structural Membranes—Proceedings of the VI international conference on textile composites and inflatable structures

    Google Scholar 

  • Marder M, Papanicolaou N (2006) Geometry and elasticity of strips and flowers. J Stat Phys 125(5–6):1065–1092

    Article  MATH  MathSciNet  Google Scholar 

  • Miura K (1993) Concepts of deployable space structures. Int J Space Struct 8: 3–16

    Google Scholar 

  • Reith M, Baumann G, Claßen-Bockhoff R, Speck T (2007) New insights in the functional morphology of the lever mechanism of Salvia pratensis. Ann Bot 100:393–400

    Article  Google Scholar 

  • Schleicher S, Lienhard J, Poppinga S, Speck T, Knippers J (2010) Abstraction of bio-inspired curved-line folding patterns for elastic foils and membranes in architecture. In: Brebbia CA (ed) Design & Nature V: Comparing Design in Nature With Science and Engineering. WIT Press, Southampton, Boston, pp 479–489

    Chapter  Google Scholar 

  • Schleicher S, Lienhard J, Knippers J, Poppinga S, Masselter T, Speck T (2011) Bio-inspired kinematics of adaptive shading systems for free form facades. In: Nethercot D et al. (eds) In: Proceedings of the 35th annual symposium of iabse / 52nd annual symposium of iass / 6th international conference on space structures. Taller Longer Lighter—Meeting growing demand with limited resources, London,UK

    Google Scholar 

  • Schleicher S, Lienhard J, Poppinga S, Speck T, Knippers J (2014) A methodology for transferring principles of plant movements to elastic systems in architecture, Computer-Aided Design, special issue: material ecologies, available online 29 January 2014, ISSN 0010-4485. http://dx.doi.org/10.1016/j.cad.2014.01.005

  • Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (1991) Strasburger. Lehrbuch der Botanik. Gustav Fischer Verlag (33. Auflage), p 456–469

    Google Scholar 

  • Speck T, Speck O (2008) Process sequences in biomimetic research. In: Brebbia CA (ed) Design and Nature IV. WIT Press, Southampton, pp 3–11

    Google Scholar 

  • Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (1991) Strasburger. Lehrbuch der Botanik. Gustav Fischer Verlag (33. Auflage), p 456–469

    Google Scholar 

  • VDI 6226 (2014) Biomimetics—Architecture, civil engineering, industrial design. VDI-Gesellschaft Technologies of Life Sciences, Düsseldorf 2014

    Google Scholar 

  • Wiedenmann J (I989) Leichtbau. Bd. 1 +2. Springer, Berlin, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Knippers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lienhard, J., Schleicher, S., Knippers, J. (2015). Bio-inspired, Flexible Structures and Materials. In: Pacheco Torgal, F., Labrincha, J., Diamanti, M., Yu, CP., Lee, H. (eds) Biotechnologies and Biomimetics for Civil Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-09287-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09287-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09286-7

  • Online ISBN: 978-3-319-09287-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics