Skip to main content

Introduction to Biotechnologies and Biomimetics for Civil Engineering

  • Chapter
  • First Online:

Abstract

This chapter starts with an overview on the sustainable development crucial challenges. The ones directly or indirectly related to the field of civil engineering are highlighted. These include greenhouse gas emissions (GHG) related to the energy consumption of the built environment, aggravated by urbanization forecast expansion, and the recent increase in building cooling needs due to climate change. It also includes the depletion of nonrenewable raw materials and mining-related environmental risks in terms of biodiversity conservation, air pollution, and contamination of water reserves. Some shortcomings of engineering curriculum to address sustainable development challenges (especially civil engineering) are described. Possible contributions of biotechnologies and biomimetics to sustainable development and the rebirth of civil engineering curriculum are suggested. A book outline is also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adeli H (2009) Vision for civil and environmental engineering departments in the 21st century. J Prof Issues Eng Educ Pract 135(1):1–3

    Article  Google Scholar 

  • Allwood J, Ashby M, Gutowski T, Worrell E (2011) Material efficiency: a white paper. Resour Conserv Recycl 55:362–381

    Article  Google Scholar 

  • Al-Rawahy KH (2013) Engineering education for sustainable development: the missing link. Proc Soc Behav Sci 102:392–401

    Article  Google Scholar 

  • Amini S, Miserez A (2013) Wear and abrasion resistance selection maps of biological materials. Acta Biomater 9:7895–7907

    Article  Google Scholar 

  • ASCE (2009) Achieving the vision for Civil Engineering in 2025. A road map for the profession. ASCE, Virginia

    Google Scholar 

  • Balaras C, Grossman G, Henning H, Infante-Ferreira C, Podesser E, Wang L, Wiemken E (2007) Solar air conditioning in European overview. Renew Sustain Energy Rev 11:299–314

    Article  Google Scholar 

  • Bar-Cohen Y (2006) Biomimetics—using nature to inspire human innovation Bioinspir Biomim 1:1–12

    Google Scholar 

  • BBSRC (2012) Biologists and physicists collaborate to investigate ‘quantum biology’. http://www.bbsrc.ac.uk/news/research-technologies/2012/121203-f-quantum-biology.aspx. Accessed in 20 June 2014

  • Beatley T Peter, Newman P (2013) Biophilic cities are sustainable, resilient cities. Sustainability 5:3328–3345

    Article  Google Scholar 

  • Benyus J (1997) Biomimicry: innovation inspired by nature. Willeam Morrow Paperbacks

    Google Scholar 

  • Boucher O, Forster P, Gruber N, Ha-Duong M, MLawrence M, Lenton T, aas A, Vaughan N (2014) Rethinking climate engineering categorization in the context of climate change mitigation and adaptation. Clim Change 5:23–35

    Google Scholar 

  • Brown C (2004) BioBricks to help reverse-engineer life. EE Times. http://www.eetimes.com/document.asp?doc_id=1150423

  • Byfield MP (2001) Graduate shortage: the key to civil engineering’s future? Proc Inst Civil Eng Civil Eng 144(4):161–165

    Google Scholar 

  • Byfield MP (2003) British civil engineering skills: defusing the time bomb. Proc Inst Civil Eng Civil Eng 156(4):183–186

    Google Scholar 

  • Cañas-Guerrero I, Mazarrón FR, Pou-Merina A, Calleja-Perucho C, Suárez-Tejero MF (2013) Analysis of research activity in the field “Engineering, Civil” through bibliometric methods. Eng Struct 56:2273–2286

    Article  Google Scholar 

  • Chakraborty S, Iyer N, Krishna P, Thakkar S (2011) Assessment of civil engineering inputs for infrastructure development. Indian Natl Acad Eng

    Google Scholar 

  • Chen P-Y, McKittrick J, Meyers M (2012) Biological materials: functional adaptations and bioinspired designs. Prog Mater Sci 57:1492–1704

    Article  Google Scholar 

  • Clayton R (2001) Editorial: Is sustainable development an oxymoron? Trans I Chem E 79(Part B): 327–328

    Google Scholar 

  • COM (2011) 571 final. Roadmap to a resource efficient Europe

    Google Scholar 

  • Crawley DB (2008) Estimating the impacts of climate change and urbanization on building performance. J Build Perform Simul 1:91–115

    Article  Google Scholar 

  • Dator J (2005) Universities without quality and quality without universities. On Horiz 13(4):199–215. Q Emerald Group Publishing Limited, ISSN 1074-8121

    Google Scholar 

  • Denghai X, Wuyi C (2011) Systematic method of applying structural characteristics of natural organisms to mechanical structures. Trans Tianjin Univ 17:293–297

    Article  Google Scholar 

  • De Vere I, Bissett Johnson K, Thong C (2009) Educating the responsible engineer: socially responsible design and sustainability in the curriculum. In: EPDE09/134, International conference on engineering and product design education, 10–11 September 2009. University of Brighton, UK

    Google Scholar 

  • Edwards DJ, Dainty ARJ, Love PED (2004) A sustainable cohort of professional civil engineering graduates? Uncovering the United Kingdom graduate crisis. Int Educ J 5(3):374–384

    Google Scholar 

  • Engel GS, Calhoun TR, Read EL et al (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786

    Article  Google Scholar 

  • Friedman N, Ibrahimbegovic A (2013) Overview of higly flexible, deployable lattice structures used in architecture and civil engineering undergoing large displacements. J Built Environ 1:85–103

    Google Scholar 

  • Fuller RB (1962) Tensile-integrity structures. US Pat 3063521

    Google Scholar 

  • Garcia R, Cabeza M, Rahbek C, Araujo M (2014) Multiple dimensions of climate change and their implications on biodiversity. Science 2(3844):6183

    Google Scholar 

  • Gebeshuber IC, Majlis BY (2010) New ways of scientific publishing and accessing human knowledge inspired by transdisciplinarity. Tribology 4:144–151

    Google Scholar 

  • Gebeshuber IC, Gruber P, Drack M (2009) A gaze into the crystal ball: biomimetics in the year 2059. Proc IMechE Part C: J Mech Eng Sci 223:2899–2918

    Google Scholar 

  • Georgescu M, Morefield P, Bierwagen B, Weaver C (2014) Urban adaptation can roll back warming of emerging megapolitan regions. Proc Natl Acad Sci USA PNAS 111:2909–2914

    Article  Google Scholar 

  • Girst MD, Raskin PD, Rockstrom J (2014) Contours of a resilient global future. Sustainability 6:123–125

    Article  Google Scholar 

  • Glass J, Dyer T, Georgopoulos C, Goodier C, Paine K, Parry T, Baumann H, Gluch P (2013) Future use of life-cycle assessment in civil engineering. Proc ICE Constr Mater 166:204–212

    Article  Google Scholar 

  • Grasso D, Burkins M, Helble J, Martinelli D (2010) Dispelling the myths of holistic engineering. In holistic engineering education: beyond technology. Springer, New York, pp 159–166

    Google Scholar 

  • Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, Steffen W, Glaser G, Kanie N, Noble I et al (2013) Policy: sustainable development goals for people and planet. Nature 495:305–307

    Article  Google Scholar 

  • Haahtela T, Holgate S, Pawankar R, Akdis C, Benjaponpitak S, Caraballo L, Demain J, Portnoy J, Von Hertzen L, WAO Special Committee on Climate Change and Biodiversity (2013) The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organ J 6:3

    Google Scholar 

  • Hamill L, Hodgkinson L (2003) Civil engineering’s image in schools—and how to change it. Proc ICE Civil Eng 156(2):78–85

    Article  Google Scholar 

  • Hamilton DP (1991) Research papers: Who’s uncited now? Science 251:25

    Article  Google Scholar 

  • Hamilton DP (1990) Publishing by and for the numbers? Science 250:1331–1332

    Article  Google Scholar 

  • Hansen J et al (2013) Assessing “Dangerous Climate Change”: required reduction of carbon emissions to protect young people. Future generations and nature. PLOS One. doi:10.1371/journal.pone.0081648

    Google Scholar 

  • Hanski I, Von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä M, Vartiainen E, Kosunen T, Alenius H, Haahtela T (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci USA. http://www.pnas.org/content/early/2012/05/01/1205624109.full.pdf

  • Helms M, Vattam S, Goel A ( 2009) Biologically inspired design: process and products. Des Stud 30:606–622

    Google Scholar 

  • Hofstra N, Huisingh D (2014) Eco-innovation characterizaed: a taxonomic classification of relationships between humana and nature. J Clean Prod 66:459–468

    Article  Google Scholar 

  • Holmberg J, Svanström M, Peet DJ, Mulder K, Ferrer-Balas D, Segalàs J (2008) Embedding sustainability in higher education through interaction with lecturers: case studies from three European technical universities. Eur J Eng Educ 33(3):271–282

    Article  Google Scholar 

  • IEA (2012) World Energy Outlook 2012. OECD/IEA, Paris

    Google Scholar 

  • Ingber DE (1998) The architecture of life. Sci Am Mag 278:48–57. http://pt.scribd.com/doc/35190367/Architecture-of-Life-Scientific-American-by-Ingber

  • Kaklauskas A, Pacheco-Torgal F, Grafakos S, Lapinskiene V (2013) Built environment life cycle process and climate change. In: Pacheco-Torgal F, Mistretta M, Cabeza L, Kalauskas A, Granqvist CG (eds) Nearly zero energy building refurbishment. A multidisciplinary approach. Springer, London, UK, pp 61–97

    Google Scholar 

  • Kaku M (2010) The Bizarre and wonderful world of quantum theory—and how understanding it has ultimately changed our lives. http://bigthink.com/dr-kakus-universe/the-bizarre-and-wonderful-world-of-quantum-theory-and-how-understanding-it-has-ultimately-changed-our-lives. Accessed on 20 June 2014

  • Kawaguchi M (2002) Preface. In: Motro R (ed) Tensegrity: structural systems for the future. Butterworth-Heinemann, Oxford (2006)

    Google Scholar 

  • Krausmann F, Gingrich S, Eisenmenger N, Erb K-H, Haberl H, Fischer-Kowalski M (2009) Growth in global materials use, GDP and population during the 20th century. Ecol Econ 68:2696–2705

    Article  Google Scholar 

  • Kwok A, Rajkovich N (2010) Addressing climate change in comfort standards. Build Environ 45:18–22

    Article  Google Scholar 

  • Lawless A (2005) A wake up call to address the capacity crisis in SA civil engineering. Civil Eng/Siviele Ingenieurswese 13(10):40–43

    Google Scholar 

  • Lepora N, Verschure P, Prescott T (2013) The state of the art in biomimetics. Bioinspir Biomim 8:013001

    Article  Google Scholar 

  • Li Y, Yang l, He B, Zhao D (2014a) Green building in China: Needs great promotion. Suatain Cities Soc 11:1–6

    Article  Google Scholar 

  • Li Y, Wang X, Zhu Q, Zhao H (2014b) Assessing the spatial and temporal differences in the impacts of factor allocation and urbanization on urban–rural income disparity in China, 2004–2010. Hatitat Int 42:76–82

    Article  Google Scholar 

  • Li D, Yang L, Lam J (2013) Zero energy buildings and sustainable development implications—a review. Energy 54:1–10

    Article  Google Scholar 

  • Loonen RCGM (2014) Climate adaptive building shells. http://www.pinterest.com/CABSoverview/

  • Lowdin P-O (1963) Proton tunneling in DNA and its biological implications. Rev Mod Phys 35(3):724–732

    Article  MathSciNet  Google Scholar 

  • Lozano R (2010) Diffusion of sustainable development in universities’ curricula: an empirical example from Cardiff University. J Clean Prod 18(7):637–644

    Article  MathSciNet  Google Scholar 

  • Lozano R (2006) Incorporation and institutionalization of SD into universities: breaking through barriers to change. J Clean Prod 14(9–11):787–796

    Article  Google Scholar 

  • Martin J, Roy E, Diemont S, Fergunson B (2010) Traditional ecological knowledge (TEK): ideas, inspiration, and designs for ecological engineering. Ecol Eng 36:839–849

    Google Scholar 

  • McMillan Malcolm, Shepherd Andrew et al (2014) Increased ice losses from Antarctica detected by CryoSat-2’. Geophys Res Lett. doi:10.1002/2014GL060111

    Google Scholar 

  • Meadows DL, Meadows DH, Behrene JRW (1972) The limits to growth. MIT Press, Boston

    Google Scholar 

  • Meadows DL, Meadows DH, Randers J (1992) Beyond the limits: global collapse or a sustainable future. Earthscan, London

    Google Scholar 

  • Muir-Wood D (2012) Civil engineering: a very short introduction. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  • Nehdi M (2002) Crisis of civil engineering education in information technology age: analysis and prospects. J Prof Issues Eng Educ Pract 128(3):131–137

    Article  Google Scholar 

  • Nicolaou I, Conlon E (2012) What do final year engineering students know about sustainable development? Eur J Eng Educ 37(3):267–277

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change 2007: synthesis report. IPCC, Geneva

    Book  Google Scholar 

  • Pacheco-Torgal F (2015) Introduction to eco-efficient materials for mitigating building cooling needs. In: Pacheco-Torgal F, Labrincha JA, Cabeza l, Granqvist CG (eds) Eco-efficient materials for mitigating building cooling needs Woodhead Publishing Limited Abington Hall, Cambridge, UK (in press)

    Google Scholar 

  • Pacheco-Torgal F (2014) Eco-efficient construction and building materials research under the EU framework programme Horizon 2020. Constr Build Mater 51:151–162

    Article  Google Scholar 

  • Pacheco-Torgal F, Cabeza L, Mistretta M, Kaklauskas A, Granqvist CG (2013a) Nearly zero energy building refurbishment. A multidisciplinary approach. Springer, London, UK

    Book  Google Scholar 

  • Pacheco-Torgal F, Labrincha JA, Jalali S, John VM (2013b) Eco-efficient concrete. Woodhead Publishing Limited Abington Hall, Cambridge, UK 592 p

    Book  Google Scholar 

  • Pacheco-Torgal F, Jalali S (2011) Eco-efficient construction and building materials. Springer, London, UK

    Book  Google Scholar 

  • Pacheco-Torgal F, Jalali S (2007) Does engineering students need sustainable development courses? In: ICEE 2007 international conference on engineering education—The moving frontiers of engineering, Coimbra

    Google Scholar 

  • Pacheco-Torgal F (2004) EST-IPCB civil engineering curricula design. A proposal. Itinerary Mag (Institute of Educational Sciences) 157–180 (only in Portuguese)

    Google Scholar 

  • Planck J (2005) Applications of biopolymers in construction engineering. Biopolymers Online 29–39. http://www.wiley-vch.de/books/biopoly/pdf_v10/vol10_17.pdf

  • Pimm SL, Raven P (2000) Biodiversity. Extinction by numbers. Nature 403:843–845

    Article  Google Scholar 

  • Plank J (2004) Application of biopolymers and other biotechnological products in building material. Appl Microbiol Biotechnol 66:1–9

    Article  MathSciNet  Google Scholar 

  • Rai A (2010) Unstandard standardization: the case of biology. Commun ACM 53:37–39

    Article  Google Scholar 

  • Reckien D, Flacke J, Dawson R, Heidrich O, Olazabal M, Foley A, Hamann J-P, Orru H, Salvia M, De Gregorio Hurtado S, Geneletti D, Pietrapertosa F (2014) Climate change response in Europe: what’s the reality ? Analysis of adaptation and mitigation plans from 200 urban areas in 11 countries. Clim Change 122:331–340

    Article  Google Scholar 

  • Reichert S, Menges A, Correa D (2014) Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput Aided Des (in press)

    Google Scholar 

  • Rhode-Barbarigos LGA, Bel Hadj ALI N, Motro R, Smith IFC (2012) Design aspects of a deployable tensegrity-hollow-rope footbridge. Int J Space Struct 27:81–96

    Article  Google Scholar 

  • Rizwan A, Dennis L, Liu C (2008) A review on the generation, determination and mitigation Urban Heat Island. J Environ Sci 20:120–128

    Article  Google Scholar 

  • Roetzel A, Tsangrassoulis A (2012) Impact of climate change on comfort and energy performance in offices. Build Environ 57:349–361

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, III, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber H, Nykvist B, De Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14(2):32. http://www.ecologyandsociety.org/vol14/iss2/art32/

  • Salcedo-Rahola B, Mulder K (2009) European sustainable development master report. What has Europe got to offer? TU Delft

    Google Scholar 

  • Sanchez C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277

    Google Scholar 

  • Sarikaya M, Tamerler C, Jen AK-Y, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2(9):577–585

    Google Scholar 

  • Sarovar M, Ishizaki A, Fleming G, Whaley B (2010) Quantum entanglement in photosynthetic light harvesting complexes. Nat Phys 6:462–467

    Article  Google Scholar 

  • Schellnhuber H (2008) Global warming. Stop worrying, start panicking? Proc Natl Acad Sci USA 105:14239–14240

    Article  Google Scholar 

  • Schleicher S, Lienhard J, Poppinga S, Speck T, Knippers J (2014) A methodology for transferring principles of plant movements to elastic systems in architecture. Comput Aided Des (in press)

    Google Scholar 

  • Seto KC, Buneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and impacts on biodiversity and carbon pools. PNAS 109(40):16083–16088

    Google Scholar 

  • Shi H, Vest C (2014) Higher engineering education for the 21st century: American perspective and its implications for China. In: International conference on education reform and modern management. Atlantis Press, pp 139–143

    Google Scholar 

  • Shimomura M (2010) The new trends in next generation biomimetics material technology: learning from biodiversity. Sci Technol Trends Q Rev 3(7):53–75

    Google Scholar 

  • Singh A (2007) Civil engineering: anachronism and black sheep. J Prof Issues Eng Educ Pract 133(1):18–30

    Article  Google Scholar 

  • Snelson K (1965) Continuous tension, discontinuous compression structures. US Pat 3(169):611

    Google Scholar 

  • Spence M, Annez PC, Buckley RM (2009) Urbanization and growth (Commission on growth and development). The International Bank for Reconstruction and Development, The World Bank

    Google Scholar 

  • Tryggvason G, Apelian D (2006) Re-engineering engineering education for the challenges of the 21st Century. JOM 58(10):14–17

    Google Scholar 

  • Valero A, Agudelo A, Valero A (2011) The crepuscular planet. A model for the exhausted atmosphere and hydrosphere. Energy 36:3745–3753

    Article  Google Scholar 

  • Varadan V, Pillai A, Mukherji D, Dwivedi M, Chen L (2010) Nanoscience and nanotechnology in engineering. World Scientific Publishing Company, Singapore

    Google Scholar 

  • Varias N (2013) Brainstorming for a beautiful planet. ISBN 1484851331

    Google Scholar 

  • Vedral V (2014) Quantum entanglement. Nat Phys 10:256–258

    Article  Google Scholar 

  • Vijayavenkataraman S, Iniyan S, Goic R (2012) A review of climate change, mitigation and adaptation. Renew Sustain Energy Rev 16(1):878–897

    Article  Google Scholar 

  • Vincent JFV (2006) Applications—influence of biology on engineering. J Bionic Eng 3(3):161–177

    Article  Google Scholar 

  • Vincent JFV, Bogatyreva O, Bogatyrev N, Bowyer A, Pahl A-K (2006) Biomimetics: its practice and theory. J R Soc Interface 22:9471–9482

    Google Scholar 

  • Vincent JFV, Mann DL (2002) Systematic technology transfer from biology to engineering. Philos Trans R Soc Lon A 360:159–173

    Article  Google Scholar 

  • Vincent JFV (2001) Stealing ideas from nature. In: Pellegrino S (ed) Deployable structures. Springer, Vienna

    Google Scholar 

  • Vincent J (2007) Re: Designing around existing patents through TRIZ, personal email communication, 5 May

    Google Scholar 

  • Von Hertzen L, Hanski I, Haahtela T (2011) Natural immunity. Eur Mol Biol Organ EMBO Rep 12:1089–1093

    Article  Google Scholar 

  • Waheed B, Khan F, Veitch B, Hawboldt K (2011) An integrated decision-making framework for sustainability assessment: a case study of memorial University. High Educ Policy 24(4):481–498

    Article  Google Scholar 

  • Watson MK, Lozano R, Noyes C, Rodgers M (2013) Assessing curricula contribution to sustainability more holistically: experiences from the integration of curricula assessment and students’ perceptions at the Georgia Institute of Technology. J Clean Prod 61(2013):106–116

    Article  Google Scholar 

  • Whitmore A (2006) The emperor’s new clothes: sustainable mining. J Clean Prod 14:309–314

    Article  Google Scholar 

  • WHO (2014) Urban population growth. Global health observatory. http://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/

  • Willis A (2012) Constructing a story to live by: ethics, emotions and academic practice in the context of climate change. Emot Space Soc 5:52–59

    Google Scholar 

  • Yang W, Chao C, McKittrick J (2013) Axial compression of a hollow cylinder filled with foam: a study. Acta Biomater 9:5297–5304

    Google Scholar 

  • Yurtseven H (2002) How does the image of engineering affect student recruitment and retention? A perspective from the USA. Glob J Eng Educ 6(1):17–23

    Google Scholar 

  • Zielinski W (2003) Vision of an engineer in the 21st century. In: Juan S (ed) 9th International conference on engineering education

    Google Scholar 

  • Zuo J, Zhao Z-Y (2014) Green building research-current status and future agenda: a review. Renew Sustain Energy Rev 30:271–281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pacheco-Torgal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pacheco-Torgal, F. (2015). Introduction to Biotechnologies and Biomimetics for Civil Engineering. In: Pacheco Torgal, F., Labrincha, J., Diamanti, M., Yu, CP., Lee, H. (eds) Biotechnologies and Biomimetics for Civil Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-09287-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09287-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09286-7

  • Online ISBN: 978-3-319-09287-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics