Skip to main content

A General System for Learning and Reasoning in Symbolic Domains

  • Conference paper
Artificial General Intelligence (AGI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8598))

Included in the following conference series:

Abstract

We present the system O  ⋆  that operates in arbitrary symbolic domains, including arithmetic, logic, and grammar. O  ⋆  can start from scratch and learn the general laws of a domain from examples. The main learning mechanism is a formalization of Occam’s razor. Learning is facilitated by working within a cognitive model of bounded rationality. Computational complexity is thereby dramatically reduced, while preserving human-level performance. As illustration, we describe the learning process by which O  ⋆  learns elementary arithmetic. In the beginning, O  ⋆  knows nothing about the syntax or laws of arithmetic; by the end, it has constructed a theory enabling it to solve previously unseen problems such as “what is 67*8?” and “which number comes next in the sequence 8,11,14?”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, P., Goertzel, B.: Theoretical Foundations of Artificial General Intelligence. Atlantis Press (2012)

    Google Scholar 

  2. Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., Thelen, E.: Autonomous Mental Development by Robots and Animals. Science 291(5504), 599–600 (2001)

    Article  Google Scholar 

  3. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall series in artificial intelligence. Prentice-Hall (2010)

    Google Scholar 

  4. Simon, H.A.: Models of Bounded Rationality: Empirically Grounded Economic Reason, vol. 3. MIT Press (1982)

    Google Scholar 

  5. Muggleton, S., Chen, J.: Guest editorial: special issue on Inductive Logic Programming (ILP 2011). Machine Learning, 1–2 (2012)

    Google Scholar 

  6. Kitzelmann, E.: Inductive Programming: A Survey of Program Synthesis Techniques. In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812, pp. 50–73. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An Architecture for General Intelligence. Artificial Intelligence 33(3), 1–64 (1987)

    Article  Google Scholar 

  8. Anderson, J.R., Lebiere, C.: The atomic components of thought. Lawrence Erlbaum, Mahwah (1998)

    Google Scholar 

  9. Gobet, F., Lane, P.: The CHREST Architecture of Cognition: The Role of Perception in General Intelligence. In: Artificial General Intelligence 2010. Atlantis Press, Lugano (2010)

    Google Scholar 

  10. Wang, P.: From NARS to a Thinking Machine. In: Proceedings of the 2007 Conference on Artificial General Intelligence, pp. 75–93. IOS Press, Amsterdam (2007)

    Google Scholar 

  11. Bezem, M., Klop, J.W., de Vrijer, R.: Term Rewriting Systems. Cambridge University Press (2003)

    Google Scholar 

  12. Smith, E.E., Kosslyn, S.M.: Cognitive Psychology: Mind and Brain. Prentice-Hall, Upper Saddle River (2006)

    Google Scholar 

  13. Toms, M., Morris, N., Ward, D.: Working Memory and Conditional Reasoning. The Quarterly Journal of Experimental Psychology 46(4), 679–699 (1993)

    Article  Google Scholar 

  14. Piaget, J.: La construction du réel chez l’enfant. Delachaux & Niestlé (1937)

    Google Scholar 

  15. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications. Texts in computer science. Springer (2009)

    Google Scholar 

  16. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI approximation. Journal of Artificial Intelligence Research 40(1), 95–142 (2011)

    MATH  MathSciNet  Google Scholar 

  17. Strannegård, C., Nizamani, A.R., Sjöberg, A., Engström, F.: Bounded Kolmogorov complexity based on cognitive models. In: Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013. LNCS (LNAI), vol. 7999, pp. 130–139. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Nizamani, A.R., Strannegård, C.: Learning Propositional Logic From Scratch. In: The 28th Annual Workshop of the Swedish Artificial Intelligence Society, SAIS (in press, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Strannegård, C., Nizamani, A.R., Persson, U. (2014). A General System for Learning and Reasoning in Symbolic Domains. In: Goertzel, B., Orseau, L., Snaider, J. (eds) Artificial General Intelligence. AGI 2014. Lecture Notes in Computer Science(), vol 8598. Springer, Cham. https://doi.org/10.1007/978-3-319-09274-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09274-4_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09273-7

  • Online ISBN: 978-3-319-09274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics