Skip to main content

Ultrasound Molecular Imaging of Endothelial Cell Activation and Damage in Atherosclerosis

  • Chapter
  • First Online:
Cardiovascular Imaging

Abstract

Atherosclerosis is a gradual process that evolves over decades with variable plaque morphologies that can lead to atherothrombotic complications such as stroke and acute coronary syndromes. The ability to image the structural, cellular, or biochemical signatures of high-risk plaque phenotype has been a major goal for essentially all forms of clinical and preclinical imaging. These efforts have been based on the need to better understand pathobiology, the need to have a biologic readout for the testing of efficacy for new treatment strategies, and for the clinical purposes of potentially selecting patients for more aggressive forms of anti-atherosclerotic treatments that are in development stage. Ultrasound-based evaluation of plaque severity and plaque composition is already an integral part of the practice of cardiovascular medicine in the form of extracorporeal and intravascular imaging. New ultrasound-based techniques are being developed that may provide incremental information to structure alone. Some of these techniques are based on the ability to detect vascular inflammation by either regional abnormalities in the mechanical properties of the vessel wall or presence of plaque neovessels using contrast ultrasound imaging. Molecular imaging with acoustically active agents targeted to endothelial cell adhesion molecules, platelets, and microthrombosis has also been used to evaluate high-risk phenotype. Although clinical translation is a distant goal, the impact of ultrasound-based molecular imaging is already being felt through its application to better define pathophysiology and evaluate new therapies in atherosclerotic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence JP. Physics and instrumentation of ultrasound. Crit Care Med. 2007;35(8 Suppl):S314–22.

    Article  PubMed  Google Scholar 

  2. Armstrong WF, Ryan T, Feigenbaum H. Feigenbaum’s echocardiography. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010. xv, 785 p.

    Google Scholar 

  3. Otto CM. Textbook of clinical echocardiography, Endocardiography. 5th ed. Philadelphia: Elsevier/Saunders; 2013.

    Google Scholar 

  4. Goldstein JA, et al. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med. 2000;343(13):915–22.

    Article  CAS  PubMed  Google Scholar 

  5. Glagov S, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.

    Article  CAS  PubMed  Google Scholar 

  6. Stone GW, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    Article  CAS  PubMed  Google Scholar 

  7. Salonen JT, Salonen R. Ultrasound B-mode imaging in observational studies of atherosclerotic progression. Circulation. 1993;87(3 Suppl):II56–65.

    CAS  PubMed  Google Scholar 

  8. Landry A, Spence JD, Fenster A. Measurement of carotid plaque volume by 3-dimensional ultrasound. Stroke. 2004;35(4):864–9.

    Article  PubMed  Google Scholar 

  9. Graebe M, et al. Reproducibility of two 3-D ultrasound carotid plaque quantification methods. Ultrasound Med Biol. 2014;40:1641–9.

    Article  PubMed  Google Scholar 

  10. DeMaria AN, et al. Imaging vulnerable plaque by ultrasound. J Am Coll Cardiol. 2006;47(8 Suppl):C32–9.

    Article  PubMed  Google Scholar 

  11. Konig A, Klauss V. Virtual histology. Heart. 2007;93(8):977–82.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Virmani R, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–61.

    Article  CAS  PubMed  Google Scholar 

  13. Asakura M, et al. Extensive development of vulnerable plaques as a pan-coronary process in patients with myocardial infarction: an angioscopic study. J Am Coll Cardiol. 2001;37(5):1284–8.

    Article  CAS  PubMed  Google Scholar 

  14. Fleiner M, et al. Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation. 2004;110(18):2843–50.

    Article  PubMed  Google Scholar 

  15. Polonsky TS, et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA. 2010;303(16):1610–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nasu K, et al. Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol. 2006;47(12):2405–12.

    Article  PubMed  Google Scholar 

  17. Puri R, Worthley MI, Nicholls SJ. Intravascular imaging of vulnerable coronary plaque: current and future concepts. Nat Rev Cardiol. 2011;8(3):131–9.

    Article  PubMed  Google Scholar 

  18. Laurent S, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37(5):1236–41.

    Article  CAS  PubMed  Google Scholar 

  19. Laurent S, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–605.

    Article  PubMed  Google Scholar 

  20. Schaar JA, et al. Intravascular palpography for high-risk vulnerable plaque assessment. Herz. 2003;28(6):488–95.

    Article  PubMed  Google Scholar 

  21. Schaar JA, et al. Characterizing vulnerable plaque features with intravascular elastography. Circulation. 2003;108(21):2636–41.

    Article  PubMed  Google Scholar 

  22. Maurice RL, et al. On the potential of the Lagrangian speckle model estimator to characterize atherosclerotic plaques in endovascular elastography: in vitro experiments using an excised human carotid artery. Ultrasound Med Biol. 2005;31(1):85–91.

    Article  PubMed  Google Scholar 

  23. Deleaval F, et al. The intravascular ultrasound elasticity-palpography technique revisited: a reliable tool for the in vivo detection of vulnerable coronary atherosclerotic plaques. Ultrasound Med Biol. 2013;39(8):1469–81.

    Article  PubMed  Google Scholar 

  24. Schaar JA, et al. Intravascular palpography for vulnerable plaque assessment. J Am Coll Cardiol. 2006;47(8 Suppl):C86–91.

    Article  PubMed  Google Scholar 

  25. Vitarelli A, et al. Aortic wall mechanics in the Marfan syndrome assessed by transesophageal tissue Doppler echocardiography. Am J Cardiol. 2006;97(4):571–7.

    Article  PubMed  Google Scholar 

  26. Rodriguez-Granillo GA, et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol. 2005;46(11):2038–42.

    Article  PubMed  Google Scholar 

  27. Carr C, Lindner JR. Ultrasound imaging of atherosclerotic plaques. Curr Cardiovasc Imaging Rep. 2009;2:24–32.

    Article  Google Scholar 

  28. McCarthy MJ, et al. Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg. 1999;30(2):261–8.

    Article  CAS  PubMed  Google Scholar 

  29. Moreno PR, et al. Neovascularization in human atherosclerosis. Curr Mol Med. 2006;6(5):457–77.

    Article  CAS  PubMed  Google Scholar 

  30. Mulvagh SL, et al. American society of echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr. 2008;21(11):1179–201; quiz 1281.

    Article  PubMed  Google Scholar 

  31. Dunmore BJ, et al. Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J Vasc Surg. 2007;45(1):155–9.

    Article  PubMed  Google Scholar 

  32. Coli S, et al. Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries: correlation with histology and plaque echogenicity. J Am Coll Cardiol. 2008;52(3):223–30.

    Article  PubMed  Google Scholar 

  33. Hoogi A, et al. Carotid plaque vulnerability: quantification of neovascularization on contrast-enhanced ultrasound with histopathologic correlation. AJR Am J Roentgenol. 2011;196(2):431–6.

    Article  PubMed  Google Scholar 

  34. Lee SC, et al. Temporal characterization of the functional density of the vasa vasorum by contrast-enhanced ultrasonography maximum intensity projection imaging. JACC Cardiovasc Imaging. 2010;3(12):1265–72.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Moguillansky D, et al. Quantification of plaque neovascularization using contrast ultrasound: a histologic validation. Eur Heart J. 2011;32(5):646–53.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Lindner JR. Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol. 2004;11(2):215–21.

    Article  PubMed  Google Scholar 

  37. Kaufmann BA, Lindner JR. Molecular imaging with targeted contrast ultrasound. Curr Opin Biotechnol. 2007;18(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  38. Lindner JR. Contrast ultrasound molecular imaging of inflammation in cardiovascular disease. Cardiovasc Res. 2009;84(2):182–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov. 2004;3(6):527–32.

    Article  CAS  PubMed  Google Scholar 

  40. Villanueva FS, Wagner WR. Ultrasound molecular imaging of cardiovascular disease. Nat Clin Pract Cardiovasc Med. 2008;5 Suppl 2:S26–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lindner JR, et al. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation. 2000;102(5):531–8.

    Article  CAS  PubMed  Google Scholar 

  42. Lindner JR. Assessment of inflammation with contrast ultrasound. Prog Cardiovasc Dis. 2001;44(2):111–20.

    Article  CAS  PubMed  Google Scholar 

  43. Kaufmann BA, Wei K, Lindner JR. Contrast echocardiography. Curr Probl Cardiol. 2007;32(2):51–96.

    Article  PubMed  Google Scholar 

  44. Calliada F, et al. Ultrasound contrast agents: basic principles. Eur J Radiol. 1998;27 Suppl 2:S157–60.

    Article  PubMed  Google Scholar 

  45. Lindner JR, et al. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation. 2000;102(22):2745–50.

    Article  CAS  PubMed  Google Scholar 

  46. Christiansen JP, et al. Noninvasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography. Circulation. 2002;105(15):1764–7.

    Article  PubMed  Google Scholar 

  47. Takalkar AM, et al. Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow. J Control Release. 2004;96(3):473–82.

    Article  CAS  PubMed  Google Scholar 

  48. Lindner JR. Molecular imaging of cardiovascular disease with contrast-enhanced ultrasonography. Nat Rev Cardiol. 2009;6(7):475–81.

    Article  CAS  PubMed  Google Scholar 

  49. Choudhury RP, Fisher EA. Molecular imaging in atherosclerosis, thrombosis, and vascular inflammation. Arterioscler Thromb Vasc Biol. 2009;29(7):983–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Dayton PA, et al. Ultrasonic analysis of peptide- and antibody-targeted microbubble contrast agents for molecular imaging of alphavbeta3-expressing cells. Mol Imaging. 2004;3(2):125–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Lankford M, et al. Effect of microbubble ligation to cells on ultrasound signal enhancement: implications for targeted imaging. Invest Radiol. 2006;41(10):721–8.

    Article  PubMed  Google Scholar 

  52. Kaufmann BA, et al. Effect of acoustic power on in vivo molecular imaging with targeted microbubbles: implications for low-mechanical index real-time imaging. J Am Soc Echocardiogr. 2010;23(1):79–85.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Lindner JR, et al. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation. 2001;104(17):2107–12.

    Article  CAS  PubMed  Google Scholar 

  54. Carr CL, et al. Dysregulated selectin expression and monocyte recruitment during ischemia-related vascular remodeling in diabetes mellitus. Arterioscler Thromb Vasc Biol. 2011;31(11):2526–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hamilton AJ, et al. Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol. 2004;43(3):453–60.

    Article  PubMed  Google Scholar 

  56. Kim H, et al. In vivo volumetric intravascular ultrasound visualization of early/inflammatory arterial atheroma using targeted echogenic immunoliposomes. Invest Radiol. 2010;45(10):685–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ley K. Molecular mechanisms of leukocyte recruitment in the inflammatory process. Cardiovasc Res. 1996;32(4):733–42.

    Article  CAS  PubMed  Google Scholar 

  58. Li H, et al. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb. 1993;13(2):197–204.

    Article  PubMed  Google Scholar 

  59. Ghattas A, et al. Monocytes in coronary artery disease and atherosclerosis: where are we now? J Am Coll Cardiol. 2013;62(17):1541–51.

    Article  CAS  PubMed  Google Scholar 

  60. Kaplan ZS, Jackson SP. The role of platelets in atherothrombosis. Hematol Am Soc Hematol Educ Program. 2011;2011:51–61.

    Article  Google Scholar 

  61. Faggiotto A, Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis. 1984;4(4):341–56.

    Article  CAS  PubMed  Google Scholar 

  62. Sevitt S. Platelets and foam cells in the evolution of atherosclerosis. Histological and immunohistological studies of human lesions. Atherosclerosis. 1986;61(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  63. Theilmeier G, et al. Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia. Blood. 2002;99(12):4486–93.

    Article  CAS  PubMed  Google Scholar 

  64. Massberg S, et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med. 2002;196(7):887–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Lindner JR, et al. Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. Circulation. 2000;101(6):668–75.

    Article  CAS  PubMed  Google Scholar 

  66. Tsutsui JM, et al. Detection of retained microbubbles in carotid arteries with real-time low mechanical index imaging in the setting of endothelial dysfunction. J Am Coll Cardiol. 2004;44(5):1036–46.

    Article  PubMed  Google Scholar 

  67. Anderson DR, et al. The role of complement in the adherence of microbubbles to dysfunctional arterial endothelium and atherosclerotic plaque. Cardiovasc Res. 2007;73(3):597–606.

    Article  CAS  PubMed  Google Scholar 

  68. Mayadas TN, et al. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell. 1993;74(3):541–54.

    Article  CAS  PubMed  Google Scholar 

  69. Kaufmann BA, et al. Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease. Arterioscler Thromb Vasc Biol. 2010;30(1):54–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Huo Y, Hafezi-Moghadam A, Ley K. Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res. 2000;87(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  71. Nakashima Y, et al. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol. 1998;18(5):842–51.

    Article  CAS  PubMed  Google Scholar 

  72. Villanueva FS, et al. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation. 1998;98(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  73. Demos SM, et al. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol. 1999;33(3):867–75.

    Article  CAS  PubMed  Google Scholar 

  74. Phillips LC, et al. Intravascular ultrasound detection and delivery of molecularly targeted microbubbles for gene delivery. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(7):1596–601.

    Article  PubMed  Google Scholar 

  75. Chadderdon SM, et al. Proinflammatory endothelial activation detected by molecular imaging in obese nonhuman primates coincides with onset of insulin resistance and progressively increases with duration of insulin resistance. Circulation. 2014;129(4):471–8.

    Article  CAS  PubMed  Google Scholar 

  76. Khanicheh E, et al. Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis. PLoS ONE. 2013;8(3):e58761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Liu Y, et al. Molecular imaging of inflammation and platelet adhesion in advanced atherosclerosis effects of antioxidant therapy with NADPH oxidase inhibition. Circ Cardiovasc Imaging. 2013;6(1):74–82.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Lanza GM, et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation. 1996;94(12):3334–40.

    Article  CAS  PubMed  Google Scholar 

  79. Alonso A, et al. Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound. Stroke. 2007;38(5):1508–14.

    Article  CAS  PubMed  Google Scholar 

  80. Wang X, et al. Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation. 2012;125(25):3117–26.

    Article  CAS  PubMed  Google Scholar 

  81. McCarty OJ, et al. Molecular imaging of activated von Willebrand factor to detect high-risk atherosclerotic phenotype. JACC Cardiovasc Imaging. 2010;3(9):947–55.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Lindner MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Atkinson, T., Lindner, J.R. (2015). Ultrasound Molecular Imaging of Endothelial Cell Activation and Damage in Atherosclerosis. In: Aikawa, E. (eds) Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-09268-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09268-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09267-6

  • Online ISBN: 978-3-319-09268-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics