Advertisement

On Exploring the Secure Connectivity of Wireless Ad Hoc Networks

  • Dianjie Lu
  • Guijuan Zhang
  • Hong Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8351)

Abstract

Connectivity of Wireless Ad hoc Networks (WANETs) has received considerable attention in the past several years. In WANETs, achieving a secure connectivity is more challenging since all the communications should operate on secure links. In this paper, we investigate the characterization of the critical density λ c for Poisson random geometric graphs which is the central problem of secure connectivity. By combining the continuum percolation theory with the clustering coefficient method, we derive a tighter lower bound on λ c which provides fundamental understanding on the secure connectivity of WANETs.

Keywords

Wireless Ad hoc Networks Connectivity Security Critical Density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: A Survey. Computer Networks 38(4), 393–4221 (2002)CrossRefGoogle Scholar
  2. 2.
    Gupta, P., Kumar, P.R.: Critical Power for Asymptotic Connectivity in Wireless Networks. In: Proc. of IEEE Conference on Decision and Control, pp. 1106–1110 (December 1998)Google Scholar
  3. 3.
    Dousse, O., Mannersalo, P., Thiran, P.: Latency of Wireless Sensor Networks with Uncoordinated Power Saving Mechanisms. In: Proc. of ACM MobiHoc 2004 (May 2004)Google Scholar
  4. 4.
    Kong, Z., Yeh, E.M.: Connectivity and Latency in Large-Scale Wireless Networks with Unreliable Links. In: Proc. of IEEE INFOCOM 2008 (April 2008)Google Scholar
  5. 5.
    Lu, D., Huang, X., Li, P., Fan, J.: Connectivity of Large-scale Cognitive Radio Ad hoc Networks. In: Proc. of IEEE INFOCOM 2012, pp. 1260–1268. IEEE Press, Orlando (2012)CrossRefGoogle Scholar
  6. 6.
    Sun, L., Wang, W.: Understanding the Tempo-spatial Limits of Information Dissemination in Multi-channel Cognitive Radio Networks. In: Proc. of IEEE INFOCOM 2012, pp. 1278–1286. IEEE Press, Orlando (2012)CrossRefGoogle Scholar
  7. 7.
    Quintanilla, J., Torquato, S., Ziff, R.M.: Efficient Measurement of the Percolation Threshold for Fully Penetrable Discs. Physics A 86, 399–407 (2000)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Balister, P., Bollobas, B., Walters, M.: Continuum Percolation with Steps in the Square or the Disc. Random Structures Algorithms 26, 392–403 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kong, Z., Yeh, E.M.: Analytical Lower Bounds on the Critical Density in Continuum Percolation. In: Proc. of the Workshop on Spatial Stochastic Models in Wireless Networks (April 2007)Google Scholar
  10. 10.
    Zhang, C., Song, Y., Fang, Y., Zhang, Y.: On the Price of Security in Large-Scale Wireless Ad Hoc Networks. IEEE/ACM Transaction on Networking 19(2), 319–331 (2011)CrossRefGoogle Scholar
  11. 11.
    Penrose, M.: Random Geometric Graphs. Oxford University Press, New York (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, New York (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dianjie Lu
    • 1
    • 2
  • Guijuan Zhang
    • 1
    • 2
  • Hong Liu
    • 1
    • 2
  1. 1.School of Information Science and EngineeringShandong Normal UniversityJinanChina
  2. 2.Shandong Provincial Key Laboratory for Novel Distributed Computer Software TechnologyJinanChina

Personalised recommendations