Skip to main content

Electron Transport, Ionization and Attachment

  • Chapter
  • First Online:
Book cover Kinetics and Spectroscopy of Low Temperature Plasmas

Part of the book series: Graduate Texts in Physics ((GTP))

  • 1466 Accesses

Abstract

This chapter is devoted to the analysis of electron transport by using the Boltzmann equation. Contrary to the previous chapters where only an electric field exists, here the electron drift also results from a density gradient. The chapter initiates by considering the situation where only the density gradient exists, which leads to free diffusion of electrons. Since the diffusion to the walls leads to the disappearing of electrons from the swarm, the reintroduction of secondary electrons produced by ionization into the distribution needs to be properly taken into account to obtain the breakdown self-sustaining field. Here, only the breakdown produced by a high-frequency (HF) field is considered, since in the direct-current (DC) case the situation is much more complicated because the breakdown also depends on the nature of the cathode.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-09253-9_12

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-09253-9_12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W.P. Allis, Motions of ions and electrons, in Handbuch der Physik, vol. 21, ed. by S. Flügge (Springer, Berlin, 1956), pp. 383–444

    Google Scholar 

  • J.-P. Boeuf, B. Chaudhury, G.Q. Zhu, Theory and modeling of self-organization and propagation of filamentary plasma arrays in microwave breakdown at atmospheric pressure. Phys. Rev. Lett. 104 (1), 015002 (2010)

    Google Scholar 

  • S.C. Brown, Breakdown in gases: alternating and high-frequency fields, in Handbuch der Physik, vol. 22, ed. by S. Flügge (Springer, Berlin, 1956), pp. 531–575

    Google Scholar 

  • B.E. Cherrington, Gaseous Electronics and Gas Lasers (Pergamon Press, Oxford, 1980)

    Google Scholar 

  • G.J. Cliteur, K. Suzuki, K.C. Paul, T. Sakuta, SF6−N2 circuit-breaker arc modelling around current zero: I. Free-recovery simulation using a collisional-radiative plasma model. J. Phys. D: Appl. Phys. 32, 478–493 (1999a)

    Google Scholar 

  • G.J. Cliteur, K. Suzuki, K.C. Paul, T. Sakuta, SF6−N2 circuit-breaker arc modelling around current zero: II. Arc-circuit-interaction simulation using Boltzmann analysis. J. Phys. D: Appl. Phys. 32, 494–503 (1999b)

    Google Scholar 

  • J.-L. Delcroix, Physique des Plasmas: Volumes 1 and 2. Monographies Dunod (Dunod, Paris, 1963, 1966) (in French)

    Google Scholar 

  • J.V. DiCarlo, M.J. Kushner, Solving the spatially dependent Boltzmann’s equation for the electron-velocity distribution using flux corrected transport. J. Appl. Phys. 66 (12), 5763–5774 (1989)

    Article  ADS  Google Scholar 

  • M. Hayashi, T. Nimura, Importance of attachment cross-sections of F formation for the effective ionisation coefficients in SF6. J. Phys. D: Appl. Phys. 17, 2215–2223 (1984)

    Article  ADS  Google Scholar 

  • T. Holstein, Energy distribution of electrons in high frequency gas discharges. Phys. Rev. 70 (5–6), 367–384 (1946)

    Article  ADS  Google Scholar 

  • H. Itoh, Y. Miura, N. Ikuta, Y. Nakao, H. Tagashira, Electron swarm development in SF6: I. Boltzmann equation analysis. J. Phys. D: Appl. Phys. 21, 922–930 (1988)

    ADS  Google Scholar 

  • H. Itoh, T. Matsumura, K. Satoh, H. Date, Y. Nakao, H. Tagashira, Electron transport coefficients in SF6. J. Phys. D: Appl. Phys. 26, 1975–1979 (1993)

    Article  ADS  Google Scholar 

  • X. Li, H. Zhao, S. Jia, Dielectric breakdown properties of SF6−N2 mixtures in the temperature range 300−3000 K. J. Phys. D: Appl. Phys. 45, 445202 (2012)

    Google Scholar 

  • A.D. MacDonald, D.U. Gaskell, H.N. Gitterman, Microwave breakdown in air, oxygen, and nitrogen. Phys. Rev. 130 (5), 1841–1850 (1963)

    Article  ADS  Google Scholar 

  • Y. Nakamura, Drift velocity and longitudinal diffusion coefficient of electrons in nitrogen and carbon monoxide. J. Phys. D: Appl. Phys. 20, 933–938 (1987)

    Article  ADS  Google Scholar 

  • J.H. Parker Jr., J.J. Lowke, Theory of electron diffusion parallel to electric fields. I. Theory. Phys. Rev. 181 (1), 290–301 (1969)

    ADS  Google Scholar 

  • A.V. Phelps, L.C. Pitchford, Anisotropic scattering of electrons by N2 and its effect on electron transport. Phys. Rev. A 31 (5), 2932–2949 (1985)

    Article  ADS  Google Scholar 

  • M.J. Pinheiro, J. Loureiro, Effective ionization coefficients and electron drift velocities in gas mixtures of SF6 with He, Xe, CO2 and N2 from Boltzmann analysis. J. Phys. D: Appl. Phys. 35, 3077–3084 (2002)

    Article  ADS  Google Scholar 

  • L.C. Pitchford, A.V. Phelps, Comparative calculation of electron-swarm properties in N2 at moderate EN values. Phys. Rev. A 25 (1), 540–554 (1982)

    Article  ADS  Google Scholar 

  • W.R.L. Thomas, The determination of the total excitation cross section in neon by comparison of theoretical and experimental values of Townsend’s primary ionization coefficient. J. Phys. B: Atomic Mol. Phys. Ser. 2 2, 551–561 (1969)

    Article  ADS  Google Scholar 

  • J. Urquijo, E. Basurto, J.L. Hernández-Ávila, Effective ionization electron and ion transport in SF6−He mixtures. J. Phys. D: Appl. Phys. 34, 2151–2159 (2001)

    Article  ADS  Google Scholar 

  • W. Wang, X. Tu, D. Mei, M. Rong, Dielectric breakdown properties of hot SF6/He mixtures predicted from basic data. Phys. Plasmas 20 (11), 113503 (2013)

    Google Scholar 

  • A.B. Wedding, H.A. Blevin, J. Fletcher, The transport of electrons through nitrogen gas. J. Phys. D: Appl. Phys. 18, 2361–2373 (1985)

    Article  ADS  Google Scholar 

  • D.M. Xiao, L.L. Zhu, Y.Z. Chen, Electron swarm parameters in SF6 and helium gas mixtures. J. Phys. D: Appl. Phys. 32, L18–L19 (1999)

    Article  ADS  Google Scholar 

  • S. Yoshida, A.V. Phelps, L.C. Pitchford, Effect of electrons produced by ionization on calculated electron-energy distributions. Phys. Rev. A 27 (6), 2858–2867 (1983)

    Article  ADS  Google Scholar 

  • M. Yousfi, P. Ségur, T. Vassiliadis, Solution of the Boltzmann equation with ionisation and attachment: application to SF6. J. Phys. D: Appl. Phys. 18, 359–375 (1985)

    Article  ADS  Google Scholar 

  • G.Q. Zhu, J.-P. Boeuf, B. Chaudhury, Ionization-diffusion plasma front propagation in a microwave field. Plasma Sources Sci. Technol. 20 (3), 035007 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

1.1 A.5.1 Expansion of the Boltzmann Equation in Spherical Harmonics

In this appendix we present the derivation of the term with the gradient in the space of positions of the Boltzmann equation (5.1) using the expansion in spherical harmonics (Cherrington 1980; Delcroix 1963, 1966). In this case using the expansion (5.2) we write the Boltzmann equation as

$$\displaystyle{ \sum _{l}\frac{\partial f_{e}^{l}} {\partial t} \;P_{l}\; +\;\sum _{l}v_{ez}\;\frac{\partial f_{e}^{l}} {\partial z} \;P_{l}\; =\;\sum _{l}I^{l}(f_{ e}^{l})\;P_{ l}, }$$
(5.129)

having assumed the anisotropy directed along the z axis. Since \(v_{ez} = v_{e}\;\cos \theta\) and making use of the recursion relation (3.209), we may write

$$\displaystyle{ \sum _{l}\frac{\partial f_{e}^{l}} {\partial t} \;P_{l}\; +\;\sum _{l}v_{e}\;\frac{\partial f_{e}^{l}} {\partial z} \left ( \frac{l + 1} {2l + 1}\,P_{l+1} + \frac{l} {2l + 1}\,P_{l-1}\right ) =\;\sum _{l}I^{l}(f_{ e}^{l})\;P_{ l}. }$$
(5.130)

The second left-hand side term can be rewritten in terms of the polynomial P l as follows

$$\displaystyle{ \sum _{l}\frac{\partial f_{e}^{l}} {\partial t} \;P_{l}\; +\;\sum _{l}v_{e}\left ( \frac{l} {2l - 1}\;\frac{\partial f_{e}^{l-1}} {\partial z} + \frac{l + 1} {2l + 3}\;\frac{\partial f_{e}^{l+1}} {\partial z} \right )P_{l}\; =\;\sum _{l}I^{l}(f_{ e}^{l})\;P_{ l}, }$$
(5.131)

so that the equation of order l is

$$\displaystyle{ \frac{\partial f_{e}^{l}} {\partial t} \; +\; v_{e}\left ( \frac{l} {2l - 1}\;\frac{\partial f_{e}^{l-1}} {\partial z} + \frac{l + 1} {2l + 3}\;\frac{\partial f_{e}^{l+1}} {\partial z} \right ) =\; I^{l}(f_{ e}^{l}), }$$
(5.132)

from which the equations (5.7) and (5.8) are immediately obtained.

1.2 A.5.2 Longitudinal Diffusion

In the time of flight experiments for determining the electron mobility μ e , the presence of an axial electric field makes the diffusion to be different in directions perpendicular and parallel to the field (Parker and Lowke 1969; Wedding et al. 1985; Nakamura 1987). The continuity equation, in the assumption of null electron source or sink, is

$$\displaystyle{ \frac{\partial n_{e}} {\partial t} \; +\; (\triangledown.\;\boldsymbol{\Gamma }_{\mathbf{e}})\; =\; 0, }$$
(5.133)

in which the electron particle current density is

$$\displaystyle{ \boldsymbol{\Gamma }_{\mathbf{e}}\; =\; -\;D_{eT}\;\triangledown _{T}n_{e}\; -\; D_{eL}\;\triangledown _{z}n_{e}\; -\; n_{e}\;\mu _{e}\;\mathbf{E}\;, }$$
(5.134)

assuming the applied electric field directed along the z axis, and being D eT and D eL the transverse and longitudinal electron diffusion coefficients. Inserting (5.134) into (5.133) and considering \(\mathbf{E} = -\;E\;\mathbf{e_{z}}\), we obtain

$$\displaystyle{ \frac{\partial n_{e}} {\partial t} \; -\; D_{eT}\left (\frac{\partial ^{2}n_{e}} {\partial x^{2}} \; +\; \frac{\partial ^{2}n_{e}} {\partial y^{2}} \right ) - D_{eL}\;\frac{\partial ^{2}n_{e}} {\partial z^{2}} \; +\;\mu _{e}\;E\;\frac{\partial n_{e}} {\partial z} \; =\; 0, }$$
(5.135)

whose solution for motion and spread of a pulse, starting from the origin at t = 0, is

$$\displaystyle{ n_{e}(x,y,z,t)\; =\; \frac{N_{0}} {4\pi D_{eT}t\sqrt{4\pi D_{eL } t}}\;\exp \left (-\;\frac{x^{2}\! +\! y^{2}} {4D_{eT}t} \right )\;\exp \left (-\;\frac{(z -\mu _{e}Et)^{2}} {4D_{eL}t} \right ). }$$
(5.136)

This solution is normalized as follows

$$\displaystyle{ \int _{-\infty }^{\infty }\int _{ -\infty }^{\infty }\int _{ -\infty }^{\infty }n_{ e}(x,y,z,t)\;dx\;dy\;dz\; =\; N_{0}. }$$
(5.137)

If a short pulse of N 0 electrons starts from z = 0 at t = 0, in a transverse infinite medium, the density n e (z, t) is

$$\displaystyle{ n_{e}(z,t)\; =\; \frac{N_{0}} {\sqrt{4\pi D_{eL } t}}\;\exp \left (-\;\frac{(z - v_{ed}\;t)^{2}} {4D_{eL}t} \right )\;, }$$
(5.138)

being v ed  = μ e E the electron drift velocity. This density passes through a maximum at

$$\displaystyle{ t_{M}\; =\; \frac{z} {v_{ed}}\;\sqrt{1 + \left (\frac{D_{eL } } {v_{ed}\;z}\right )^{\!\!2}} -\;\frac{D_{eL}} {v_{ed}^{\;2}}. }$$
(5.139)

In Pitchford and Phelps (1982) and Phelps and Pitchford (1985) we may find the calculation of D eL from an expansion in powers of the spatial gradients of the electron distribution function f e (r, v e, t) in cylindrical geometry

$$\displaystyle{ f_{e}(\mathbf{r},\mathbf{v_{e}},t)\; =\; f(\mathbf{v_{e}})\;n_{e}(\mathbf{r},t)\; -\;\frac{g_{r}(\mathbf{v_{e}})} {n_{o}} \;\frac{\partial n_{e}} {\partial r} \; -\;\frac{g_{z}(\mathbf{v_{e}})} {n_{o}} \;\frac{\partial n_{e}} {\partial z}, }$$
(5.140)

where f(v e), g r (v e), and g z (v e) are velocity distributions normalized such that

$$\displaystyle{ \int _{\mathbf{v_{e}}}f(\mathbf{v_{e}})\;\mathbf{dv_{e}}\; =\; 1\;;\;\;\;\int _{\mathbf{v_{e}}}g_{r}(\mathbf{v_{e}})\;\mathbf{dv_{e}}\; =\;\int _{\mathbf{v_{e}}}g_{z}(\mathbf{v_{e}})\;\mathbf{dv_{e}}\; =\; 0, }$$
(5.141)

and n o is the gas number density. The continuity equation is then

$$\displaystyle{ \frac{\partial n_{e}} {\partial t} \; -\; D_{eT}\;\frac{1} {r}\; \frac{\partial } {\partial r}\left (r\;\frac{\partial n_{e}} {\partial r} \right ) - D_{eL}\;\frac{\partial ^{2}n_{e}} {\partial z^{2}} \; +\; v_{ed}\;\frac{\partial n_{e}} {\partial z} \; =\; 0. }$$
(5.142)

Using the two-term expansion in Legendre polynomials for the velocity dependent functions (5.141), we obtain the following expression for the electron drift velocity in accordance with (3.171)

$$\displaystyle{ v_{ed}\; =\;\int _{\mathbf{v_{e}}}v_{e}\;\cos \theta \;\;f(\mathbf{v_{e}})\;\;\mathbf{dv_{e}}\; =\; -\;\frac{E} {n_{o}}\;\frac{e} {3}\;\sqrt{ \frac{2} {m}}\int _{0}^{\infty } \frac{u} {\sigma _{m}^{e}(u)}\;\frac{df^{0}} {du} \;du, }$$
(5.143)

whereas the transverse and longitudinal electron diffusion coefficients, in two-term approximation, are given by (see Pitchford and Phelps 1982; Phelps and Pitchford 1985)

$$\displaystyle\begin{array}{rcl} n_{o}\;D_{eT}& =& \int _{\mathbf{v_{e}}}v_{e}\;\sin \theta \;\;g_{r}(\mathbf{v_{e}})\;\;\mathbf{dv_{e}}\; =\; \frac{1} {3}\;\sqrt{ \frac{2} {m}}\int _{0}^{\infty } \frac{u} {\sigma _{m}^{e}(u)}\;f^{0}(u)\;du{}\end{array}$$
(5.144)
$$\displaystyle\begin{array}{rcl} n_{o}\;D_{eL}& =& \int _{\mathbf{v_{e}}}v_{e}\;\cos \theta \;\;g_{z}(\mathbf{v_{e}})\;\;\mathbf{dv_{e}}\; =\; \frac{1} {3}\;\sqrt{ \frac{2} {m}}\int _{0}^{\infty }u\;g_{ z}^{1}(u)\;du \\ & =& n_{o}\;D_{eT}\; -\; \frac{E} {n_{o}}\;\frac{e} {3}\;\sqrt{ \frac{2} {m}}\int _{0}^{\infty } \frac{u} {\sigma _{m}^{e}(u)}\;\frac{dg_{z}^{0}} {du} \;du\; -\; v_{ed}\int _{0}^{\infty }g_{ z}^{0}(u)\;\sqrt{u}\;du\;. \\ & & {}\end{array}$$
(5.145)

The functions f 0(u) and g z 0(u) are normalized such that

$$\displaystyle{ \int _{0}^{\infty }f^{0}(u)\;\sqrt{u}\,du\; =\; 1\;;\;\;\;\int _{ 0}^{\infty }g_{ z}^{0}(u)\;\sqrt{u}\;du\; =\; 0\;. }$$
(5.146)

The transverse diffusion coefficient agrees with the free diffusion coefficient previously reported through equation (3.193) and derived later on in (5.12), whereas D eL  ≡ D eT as \(g_{z}^{0}(u) \rightarrow 0\) throughout (i.e. for null axial density gradients).

Exercises

Exercise 5.1:

Determine the power lost in ionization from equation (5.75).

Resolution:

The equation for electron energy conservation (5.125) is obtained multiplying both sides of the equation for evolution of the isotropic component of the velocity distribution function (5.113) by the electron energy \(u = \frac{1} {2}\;mv_{e}^{\;2}\) and integrating over the whole velocity space

$$\displaystyle{ \frac{\partial } {\partial t}\left (n_{e} < u >\right )\; +\;\ldots \ldots \ldots \ldots \ldots.\; =\;\int _{ 0}^{\infty }u\;(I^{0}\; +\; J^{0})\;4\pi v_{ e}^{\;2}\;dv_{ e}\;.}$$

Then, the term for P ion in equation (5.125) is given by

$$\displaystyle{P_{ion}\; =\; -\int _{0}^{\infty }u\;J_{ ion}^{0}\;4\pi v_{ e}^{\;2}\;dv_{ e}\;,}$$

with J ion 0 expressed by equation (5.75). Thus, we may write

$$\displaystyle\begin{array}{rcl} P_{ion}& =& -\int _{0}^{\infty }u\; \frac{2} {mv_{e}}\;n_{o}\;\Bigg\{\left ( \frac{u} {\Delta } + u_{I}\right )\;\sigma _{ion}\left ( \frac{u} {\Delta }\; +\; u_{I}\right )\;f_{e}^{0}\left ( \frac{u} {\Delta } + u_{I}\right )\; \frac{1} {\Delta } {}\\ & & \qquad + \left ( \frac{u} {1 - \Delta } + u_{I}\right )\;\sigma _{ion}\left ( \frac{u} {1 - \Delta } + u_{I}\right )\;f_{e}^{0}\left ( \frac{u} {1 - \Delta } + u_{I}\right )\; \frac{1} {1 - \Delta } {}\\ & & \qquad - u\;\sigma _{ion}(u)\;f_{e}^{0}(u)\Bigg\}\;\;4\pi v_{ e}^{\;2}\;dv_{ e}\;. {}\\ \end{array}$$

Replacing v e with the electron energy u and using for simplification the electron energy distribution function (EEDF) normalized such that

$$\displaystyle{n_{e}\; =\;\int _{ 0}^{\infty }F(u)\;\sqrt{u}\;du\;,}$$

in which

$$\displaystyle{F(u)\; =\; \frac{4\pi } {m}\;\sqrt{ \frac{2} {m}}\;\;f_{e}^{0}(v_{ e})\;,}$$

we find

$$\displaystyle\begin{array}{rcl} P_{ion}& =& -\;\sqrt{ \frac{2} {m}}\;\;n_{o}\Bigg\{\int _{0}^{\infty }u^{{\prime}}\;\left (\frac{u^{{\prime}}} {\Delta } + u_{I}\right )\;\sigma _{ion}\left (\frac{u^{{\prime}}} {\Delta }\; +\; u_{I}\right )\;F\left (\frac{u^{{\prime}}} {\Delta } + u_{I}\right )\; \frac{1} {\Delta }\;du^{{\prime}} {}\\ & & \qquad +\int _{ 0}^{\infty }u^{{\prime\prime}}\;\left ( \frac{u^{{\prime\prime}}} {1 - \Delta } + u_{I}\right )\;\sigma _{ion}\left ( \frac{u^{{\prime\prime}}} {1 - \Delta } + u_{I}\right )\;F\left ( \frac{u^{{\prime\prime}}} {1 - \Delta } + u_{I}\right )\; \frac{1} {1 - \Delta }\;du^{{\prime\prime}} {}\\ & & \qquad -\int _{u_{I}}^{\infty }u^{2}\;\sigma _{ ion}(u)\;F(u)\;du\Bigg\}\;. {}\\ \end{array}$$

Making the replacements \(u = u^{{\prime}}/\Delta + u_{I}\), \(u^{{\prime}} = \Delta \;(u - u_{I})\), and \(du^{{\prime}} = \Delta \;du\) in the first term, and \(u = u^{{\prime\prime}}/(1 - \Delta ) + u_{I}\), \(u^{{\prime\prime}} = (1 - \Delta )\;(u - u_{I})\), and \(du^{{\prime\prime}} = (1 - \Delta )\;du\) in the second term, we obtain

$$\displaystyle\begin{array}{rcl} P_{ion}& =& -\;\sqrt{ \frac{2} {m}}\;\;n_{o}\Bigg\{\int _{u_{I}}^{\infty }(u - u_{ I})\;u\;\sigma _{ion}(u)\;F(u)\;\Delta \;du {}\\ & & \qquad +\int _{ u_{I}}^{\infty }(u - u_{ I})\;u\;\sigma _{ion}(u)\;F(u)\;(1 - \Delta )\;du {}\\ & & \qquad -\int _{u_{I}}^{\infty }u^{2}\;\sigma _{ ion}(u)\;F(u)\;du\Bigg\} {}\\ & \!\!=\!\!& \sqrt{ \frac{2} {m}}\;\;n_{o}\int _{u_{I}}^{\infty }u_{ I}\;u\;\sigma _{ion}(u)\;F(u)\;du {}\\ & \!\!=\!\!& n_{o}\;n_{e}\;u_{I}\;C_{ion}\;, {}\\ \end{array}$$

in which

$$\displaystyle{C_{ion}\; =\; \frac{1} {n_{e}}\;\;\sqrt{ \frac{2} {m}}\int _{u_{I}}^{\infty }u\;\sigma _{ ion}(u)\;F(u)\;du}$$

is the electron ionization rate coefficient.

Exercise 5.2:

Determine the power lost in electron attachment.

Resolution:

The power lost in electron attachment is obtained from

$$\displaystyle{P_{att}\; =\; -\int _{0}^{\infty }u\;J_{ att}^{0}\;4\pi v_{ e}^{\;2}\;dv_{ e}\;,}$$

where J att 0 has the same form as the third term of equation (5.75) but for attachment

$$\displaystyle{J_{att}^{0}\; =\; -\; \frac{2} {mv_{e}}\;n_{o}\;u\;\sigma _{att}\;f_{e}^{0}\;.}$$

Substituting and replacing v e with the electron energy u, we obtain

$$\displaystyle{P_{att}\; =\; \frac{8\pi } {m^{2}}\;n_{o}\int _{0}^{\infty }u^{2}\;\sigma _{ att}(u)\;f_{e}^{0}(u)\;du\;.}$$

Using now the EEDF F(u) as defined in Exercise 5.1, we may write

$$\displaystyle{P_{att}\; =\;\int _{ 0}^{\infty }u^{3/2}\;\nu _{ att}(u)\;F(u)\;du\;,}$$

with ν att (u) denoting the electron attachment frequency given by

$$\displaystyle{\nu _{att}(u)\; =\; n_{o}\;v_{e}\;\sigma _{att}(v_{e})\; =\; n_{o}\;\sqrt{\frac{2u} {m}} \;\;\sigma _{att}(u)\;.}$$

Replacing ν att (u) in P att , we obtain at the end

$$\displaystyle{P_{att}\; =\; n_{e} <\!\! u\;\nu _{att}\!\! >\;.}$$

Exercise 5.3:

Write the expressions for the electron drift velocity (5.119) and for the power brought to the electron drift by the ionization-attachment balance (5.126) in terms of the EEDF F(u) used in the previous exercises.

Resolution:

From equation (5.119) we obtain

$$\displaystyle{v_{ed}\; =\; -\; \frac{1} {n_{e}n_{o}}\;\;\sqrt{ \frac{2} {m}}\int _{0}^{\infty } \frac{u} {3\sigma _{m}^{e}}\left (eE\;\frac{dF} {du} \; +\; (\alpha -\eta )\;F\right )du\;,}$$

with \(\sigma _{m}^{e}\) denoting the effective electron cross-section for momentum transfer, while from (5.126) we find

$$\displaystyle{P_{flow}\; =\; -\;\sqrt{ \frac{2} {m}}\; \frac{\alpha -\eta } {n_{o}}\int _{0}^{\infty } \frac{u^{2}} {3\sigma _{m}^{e}}\left (eE\;\frac{dF} {du} \; +\; (\alpha -\eta )\;F\right )\;du\;.}$$

In the case of pure SF6, P flow is < 0 at En o  < 370 Td and P flow  > 0 at En o  > 370 Td, so that in the first situation P flow represents a gain energy term.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Loureiro, J., Amorim, J. (2016). Electron Transport, Ionization and Attachment. In: Kinetics and Spectroscopy of Low Temperature Plasmas. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-09253-9_5

Download citation

Publish with us

Policies and ethics