Skip to main content

Laser Spectroscopy

  • Chapter
  • First Online:
  • 1482 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

In order to improve the existing plasma techniques and to develop new processes, physicists and engineers need predictive models based on plasma physics, chemical physics and hydrodynamics. The knowledge of physical and chemical data must be checked or determined through experiments. Moreover, the reproducibility of a process is largely related to the control of some determining plasma parameters, which can be performed through diagnostics. For all these reasons plasma diagnostic techniques are of fundamental importance. In the last 30 years, many types of plasma diagnostics have been developed (Lochte-Holtgreven 1968; Donnelly et al. 1990; Preppernau et al. 1993; Jolly 1995), each of them allowing one to access one or more plasma parameters, but no one being able to fully characterize plasmas. So, plasma physicists have to simultaneously or successively use various diagnostics depending on the objective of their study. Among the main techniques currently used to characterize plasmas we may mention electric and magnetic probes, mass spectrometry, emission and absorption spectroscopy and laser-based techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • N.G. Adams, C.R. Herd, D. Smith, Development of the flowing afterglow Langmuir probe technique for studying the neutral products of dissociative recombination using spectroscopic techniques - OH production in the HCO-2(+)+E reaction. J. Chem. Phys. 91, 963–973 (1989)

    Google Scholar 

  • M. Aldén, H. Edner, P. Grafström, S. Svanberg, Two-photon excitation of atomic oxygen in a flame. Opt. Commun. 42, 244–246 (1982)

    Article  ADS  Google Scholar 

  • J. Amorim, G. Baravian, A. Ricard, Production of N, H and NH active species in N2–H2dc flowing discharges. Plasma Chem. Plasma Process. 15, 721–731 (1995)

    Article  Google Scholar 

  • J. Amorim, G. Baravian, J. Jolly, Laser-induced resonance fluorescence as a diagnostic technique in non-thermal equilibrium plasmas. J. Phys. D Appl. Phys. 33, R51–R65 (2000)

    Article  ADS  Google Scholar 

  • A. Arnold, H. Becker, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, W. Pfister, Flame front imaging in an internal-combustion engine simulator by laser-induced fluorescence of acetaldehyde. Opt. Lett. 15, 831–833 (1990)

    Article  ADS  Google Scholar 

  • N.G. Basov, V.A. Danilychev, Y.M. Popov, Stimulated emission in the vacuum ultraviolet region. Sov. J. Quantum Electron. 1, 18–22 (1971)

    Article  ADS  Google Scholar 

  • G.P. Davis, R.A. Gottscho, Measurement of spatially resolved gas-phase plasma temperatures by optical-emission and laser-induced fluorescence spectroscopy. J. Appl. Phys. 54, 3080–3086 (1983)

    Article  ADS  Google Scholar 

  • V.M. Donnelly, D.L. Flamm, G. Collins, Laser diagnostics of plasma-etching – measurement of Cl2 +in a chlorine discharge. J. Vac. Sci. Technol. 21, 817–823 (1982)

    Article  ADS  Google Scholar 

  • V.M. Donnelly, Plasma–Surface Interactions and Processing of Materials(NATO ASI Series E, vol. 176) (Kluwer, Dordrecht, 1990)

    Google Scholar 

  • F. Fresnet, G. Baravian, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, M. Rozoy, Proc. 14th Int. Symp. Plasma Chemistry(Prague, Czech Republic, 1999), p. 2661

    Google Scholar 

  • R.A. Gottscho, R.H. Burton, G.P. Davis, Radiative lifetime and collisional quenching of carbon monochloride (A 2-Delta) in an alternating-current glow-discharge. J. Chem. Phys. 77, 5298–5301 (1982)

    Article  ADS  Google Scholar 

  • R.A. Gottscho, M.L. Mandich, Time-resolved optical diagnostics of radio-frequency plasmas. J. Vac. Sci. Technol. A 3, 617–624 (1985)

    Article  ADS  Google Scholar 

  • M. Hamamoto, T. Ohgo, K. Kondo, T. Oda, A. Iiyoshi, K. Uo, Coaxial laser-induced fluorescense spectroscopic system for impurity diagnostics in plasmas. Jap. J. Appl. Phys. 25, 99–102 (1986)

    Article  ADS  Google Scholar 

  • S.G. Hansen, G. Luckman, S.D. Colson, Measurements of F-star, CF and CF2formation and decay in pulsed fluorocarbon discharges. Appl. Phys. Lett. 53, 1588–1590 (1988)

    Article  ADS  Google Scholar 

  • N. Hata, A. Matsuda, K. Tanaka, Spectroscopic diagnostics of plasma-chemical vapor deposition from silane and germane. J. Appl. Phys. 61, 3055–3060 (1987)

    Article  ADS  Google Scholar 

  • C. Hayaud, PhD Thesis, Université Paris-Sud, Orsay, France, 1997 (in French)

    Google Scholar 

  • F. Hummernbrum, H. Kempkens, A. Ruzicka, H.D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, Laser-induced fluorescence measurements on the C(2) Sigma(+) -X(2)Pi(r) transition of the CH radical produced by a microwave excited process plasma. Plasma Sources Sci. Technol. 1, 221–231 (1992)

    Google Scholar 

  • W. Jacob, M. Engelhard, W. Moller, A. Koch, Absolute density determination of CH radicals in a methane plasma. Appl. Phys. Lett. 64, 971–973 (1994)

    Article  ADS  Google Scholar 

  • J. Jolly, Diagnostics laser dans les plasmas froids. J. Phys. III 5, 1089–1113 (1995)

    MathSciNet  Google Scholar 

  • A. Kono, N. Koike, K. Okuda, T. Goto, Laser-induced fluorescence detection of SiH2radicals in a radiofrequency silane plasma. Jap. J. Appl. Phys. 32, L543–L546 (1993)

    Google Scholar 

  • M.B. Leong, A.P. D’Silva, V.A. Fassel, Evaluation of stimulated raman-scattering of tunable dye-laser radiation as a primary excitation source for exciting atomic fluorescence in an inductively coupled plasma. Anal. Chem. 58, 2594–2598 (1986)

    Article  Google Scholar 

  • W. Lochte-Holtgreven, Plasma Diagnostics(North-Holland, Amsterdam, 1968)

    Google Scholar 

  • K. Niemi, V. Schulz-von der Gathen, H.F. Doebele, Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation. J. Phys. D Appl. Phys. 34, 2330–2335 (2001)

    Article  ADS  Google Scholar 

  • N. Omenetto, H.G.C. Human, P. Cavalli, G. Rossi, Laser excited atomic and ionic non-resonance fluorescence detection limits for several elements in an argon inductively coupled plasma. Spectrochim. Acta Part B At. Spectrosc. 39, 115–117 (1984)

    Article  ADS  Google Scholar 

  • R. Paschotta, Article on ‘Argon Ion Lasers’ in the Encyclopedia of Laser Physics and Technology, 1st edn. (Wiley-VCH, 2008) ISBN 978-3-527-40828-3

    Google Scholar 

  • B.L. Preppernau, T.A. Miller, Glow Discharge Spectroscopiesed. by R. Kenneth Marcus (Plenum, New York, 1993)

    Google Scholar 

  • R.M. Roth, K.G. Spears, G. Wong, Spatial concentrations of silicon atoms by laser-induced fluorescence in a silane glow-discharge. Appl. Phys. Lett. 45, 28–30 (1984)

    Article  ADS  Google Scholar 

  • G.S. Selwyn, Atomic arsenic detection by ArF laser‐induced fluorescence. Appl. Phys. Lett. 51, 167–168 (1987)

    Article  ADS  Google Scholar 

  • S. Singleton, K.G. McKendrick, R.A. Copeland, J.B. Jeffries, Vibrational transition-probabilities in the B-X and B’-X systems of the SiCl radical. J. Phys. Chem. 96, 9703–9709 (1992)

    Article  Google Scholar 

  • O. Svelto, Principles of Lasers, 4th edn. (Plenum Press, New York, 1998)

    Google Scholar 

  • K. Tachibana, T. Mukai, H. Harima, Measurement of absolute densities and spatial distributions of Si and SiH in an rf-discharge silane plasma for the chemical vapor- deposition of A-Si-H films. Jap. J. Appl. Phys. 30, L1208–L1211 (1991)

    Article  ADS  Google Scholar 

  • P. Van der Weijer, B.H. Zwerver, Laser-induced fluorescence of OH and SiO molecules during thermal chemical vapor-deposition of SiO2from silane oxygen mixtures. Chem. Phys. Lett. 163, 48–54 (1989)

    Article  ADS  Google Scholar 

  • R. Walkup, P. Avouris, R.W. Dreyfus, J.M. Jasinski, G.S. Selwyn, Laser detection of diatomic products of plasma sputtering and etching. Appl. Phys. Lett. 45, 372–374 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Loureiro, J., Amorim, J. (2016). Laser Spectroscopy. In: Kinetics and Spectroscopy of Low Temperature Plasmas. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-09253-9_10

Download citation

Publish with us

Policies and ethics