Advertisement

Structural Analyses: X-ray Diffraction

  • Martin Schmal
  • Carlos André C. Perez
Chapter

Abstract

Structural analyses of materials are presented using x-ray diffraction techniques. Rietveld method was applied for determining cell parameters.

Keywords

Crystallite sizes Rietveld Structure X-ray parameters 

References

  1. 1.
    Guinier A. X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. New York: Dover; 1994.Google Scholar
  2. 2.
    Waasmaier D, Kirfel A. New analytical scattering-factor functions for free atoms and ions. Acta Crystallogr A. 1995;51(3):416–31.CrossRefGoogle Scholar
  3. 3.
    Hahn T. International tables for crystallography, space-group symmetry. New York: Wiley; 2005.Google Scholar
  4. 4.
    International Center for Diffraction Data, Powder Diffraction Database (1–42); 1992.Google Scholar
  5. 5.
    Hanawalt JD, Rinn HW, Frevel LK. Chemical analysis by X-ray diffraction: classification and use of X-ray diffraction patterns. Powder Diffr. 1986;1:2–14.Google Scholar
  6. 6.
    Young RA (ed). The rietveld method. International Union of Crystallography Monographs on Crystallography. Oxford: Oxford University Press; 1995.Google Scholar
  7. 7.
    Carvajal JR. FULLPROF: A program for rietveld refinement and pattern matching analysis. 1990. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr.Google Scholar
  8. 8.
    Larson AC, Von Dreele R. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86–748; 2000.Google Scholar
  9. 9.
    Schmal M, Perez CA, da Silva VT, Padilha LF. Hydrogen and ethylene production from partial oxidation of methane on CuCe, CuZr mixed oxides and ZrO2 catalysts. Appl Catal A Gen. 2010;375:205–12.CrossRefGoogle Scholar
  10. 10.
    Souza FT, Magalhães RNS, Perez CAC, Schmal M. Structural investigation of LaCoO3 and LaCoCuO3 perovskite-type oxides and the effect of Cu on coke deposition in the partial oxidation of methane. Appl Catal B Environ. 2012;117–118:156–66.Google Scholar
  11. 11.
    Hansteen OH, Fjellvåg H, Hauback BC. Crystal structure and magnetic properties of La2Co2O5. J Solid State Chem. 1998;141(2):411–7.CrossRefGoogle Scholar
  12. 12.
    Cullity B, Stock S. Elements of X-ray diffraction. Prentice Hall: Upper Saddle River, NJ; 2001.Google Scholar
  13. 13.
    BIAŁOBOK, B., TRAWCZYŃSKI, J., MIŚTA, W., ZAWADZKI, M., 2007, “Ethanol combustion over strontium- and cerium-doped LaCoO3 catalysts”, Applied Catalysis B: Environmental, v. 72, n. 3-4 (Mar), pp. 395-403.Google Scholar
  14. 14.
    Hernández-Alonso, M. D., Hungría, A. B., Martínez-Arias, A., et al., 2004, "EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation", Applied Catalysis B: Environmental, v. 50, n. 3, p.167-175.Google Scholar
  15. 15.
    Hori, C. E., Permana, H., Ng, K. Y. S., et al., 1998, "Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system", Applied Catalysis B: Environmental, v. 16, n. 2, p.105-117.Google Scholar
  16. 16.
    HUANG, L., BASSIR, M., KALIAGUINE, S., 2005, “Reducibility of Co3+ in perovskite-type LaCoO3 and promotion of copper on the reduction of Co3+ in perovskite-type oxides”, Applied Surface Science, v. 243, pp. 360–375.Google Scholar
  17. 17.
    Mai, H.-X., Sun, L.-D., Zhang, Y.-W., et al., 2005, "Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes", The Journal of Physical Chemistry B, v. 109, n. 51, p.24380-24385.Google Scholar
  18. 18.
    Matsumoto, S. I., 2004, "Recent advances in automobile exhaust catalysts", Catalysis Today, v. 90, n. 3-4, p.183-190.Google Scholar
  19. 19.
    Rabelo Neto RC, , Schmal M,, Synthesis of CeO2 and CeZrO2 mixed oxide nanostructured catalysts for the iso-syntheses reaction, Applied Catalysis A: General 450 (2013) 131– 142.Google Scholar
  20. 20.
    Magalhães RNSH. ,Toniolo FS ,da Silva V T , Schmal M, Selective CO oxidation reaction (SELOX) over cerium-doped LaCoO3 perovskite catalysts, Applied Catalysis A: General 388 (2010) 216–224.Google Scholar
  21. 21.
    Sun, C., Li, H. e Chen, L., 2007, "Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction", Journal of Physics and Chemistry of Solids, v. 68, n. 9, p.1785-1790.Google Scholar
  22. 22.
    Faria WLS, Perez CAC , Cezar DV, Dieguez LC, Al2O3 catalysts for oxidative steam reforming of propane, Applied Catalysis B: Environmental 92 (2009) 217–224.Google Scholar
  23. 23.
    Zhang, F., Chan, S.-W., Spanier, J. E., et al., 2002, "Cerium oxide nanoparticles: Size-selective formation and structure analysis", Applied Physics Letters, v. 80, n. 1, p.127-129.Google Scholar
  24. 24.
    SIS, L. B., WIRTZ, G. P., SORENSON, S. C., 1973, “Structure and properties of reduced LaCoO3”, Journal of Applied Physics, v. 44, n. 12 (Dec), pp. 5553-5559.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Martin Schmal
    • 1
    • 2
  • Carlos André C. Perez
    • 1
    • 2
  1. 1.Chem.Eng. Dept.Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.University of São Paulo (USP)São PauloBrazil

Personalised recommendations