Skip to main content

Variables Influencing Final Properties of Catalysts

  • Chapter
  • First Online:
Heterogeneous Catalysis and its Industrial Applications
  • 1766 Accesses

Abstract

Variables influencing the preparation methods and the final properties of the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bond CC. Heterogeneous catalysis and applications. Oxford: Clarendon; 1974.

    Google Scholar 

  2. Satterfield CN. Heterogeneous catalysis in practice. New York: McGraw Hill; 1980.

    Google Scholar 

  3. Ciola R. Fundamentos em Catálise. São Paulo: Editora Moderna; 1981.

    Google Scholar 

  4. Cardoso D. Introdução a Catálise Heterogênea. U.F.S. Carlos; 1987.

    Google Scholar 

  5. Figueiredo JL, Ramôa Ribeiro F. Catálise heterogênea. Lisboa: Fundação Calouste Gulbekian; 1987.

    Google Scholar 

  6. Anderson RB. Experimental methods in catalytic research. New York: Academic; 1968.

    Google Scholar 

  7. Trimm DL. Design of industrial catalysis. Amsterdam: Elsevier Scientific Publishing; 1980.

    Google Scholar 

  8. Kung HH, Kung MC, Costello CK. Supported Au catalysts for low temperature CO oxidation. J Catal. 2003;216:425–32.

    Article  CAS  Google Scholar 

  9. Moujijn JA, van Leeuwen PWNM, van Santen RA. Catalysis – Studies science and catalysis, vol. 79. Amsterdam: Elsevier Scientific Publishing; 1993.

    Google Scholar 

  10. Araujo LRR, Schmal M. The calcination effects on Pt/HZSM-5 catalysts in the aromatization of propane. Appl Catal A. 2000;203(2):275.

    Article  Google Scholar 

  11. Gallezot P, Alarcon-Diaz A, Dalmon JA. Location and dispersion of platinum in PtY Zeolites. J Catal. 1975;39:334.

    Article  CAS  Google Scholar 

  12. Lee S-J, Gavriilidis A. Supported Au catalysts for low-temperature CO oxidation prepared by impregnation. J Catal. 2002;206:305.

    Article  CAS  Google Scholar 

  13. Haruta M. Nanoparticulate gold catalysts for low-temperature Co oxidation. J New Mater Electrochem Syst. 2004;7:163.

    CAS  Google Scholar 

  14. Wolf A, Schuth F. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl Catal A Gen. 2002;226:1.

    Article  CAS  Google Scholar 

  15. Le Page JF, Cosyns J, Courty P, Freud E, Franck JP, Joaquin Y, Jugin B, Marcelly G, Martino G, et al. Catalyse de Contact, Technip (1978).

    Google Scholar 

  16. Schmal M, Souza MVM, Aranda DAG, Perez CAC. Promoting effect of zirconia coated on alumina on the formation of platinum nanoparticles – application on CO2 reforming of methane. Stud Surf Sci Catal. 2001;132:695–700.

    Article  CAS  Google Scholar 

  17. Alberton AL, Souza MMVM, Schmal M. Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catal Today. 2007;123:257.

    Article  CAS  Google Scholar 

  18. Frusteri F, Freni S, Chiodo V, Spadaro L, Bonura G, Cavallaro S. Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Appl Catal. 2004;270:1.

    Article  CAS  Google Scholar 

  19. Tauster SJ, Fung SC. Strong metal-support interactions: occurrence among the binary oxides of Groups IIA-VB. J Catal. 1978;55:29.

    Article  CAS  Google Scholar 

  20. Jiang X-Z, Hayden TF, Dumesic JA. Evidence for slow uptake of hydrogen by titania-supported metal samples: consequences for estimating metallic surface areas. J Catal. 1983;83:168.

    Article  CAS  Google Scholar 

  21. Haller G, Resasco DE. Metal–support interaction: Group VIII metals and reducible oxides. Adv Catal. 1989;36:173.

    CAS  Google Scholar 

  22. Horsley JA. A molecular orbital study of strong metal-support interaction between platinum and titanium dioxide. J Am Chem Soc. 1979;101(11):2870.

    Article  CAS  Google Scholar 

  23. Resende NS, Eon JG, Schmal M. Pt–TiO2–Al2O3 catalyst I. Dispersion of platinum on alumina-grafted titanium oxide. J Catal. 1999;183:6.

    Article  Google Scholar 

  24. Bao H, Chen X, Fang J, et al. Structure-activity relation of Fe2O3-CeO2 composite catalysts in CO oxidation. Catal Lett. 2008;125:160–7.

    Article  CAS  Google Scholar 

  25. Bensalem A, Bozon-Verduraz F, Delamar M. Preparation and characterization of highly dispersed silica-supported ceria. Appl Catal A Gen. 1995;121(1):81–93.

    Article  CAS  Google Scholar 

  26. Cant NW, Angove DE, Patterson MJ. The effects of residual chlorine on the behaviour of platinum group metals for oxidation of different hydrocarbons. Catal Today. 1998;44:93–9.

    Article  CAS  Google Scholar 

  27. Chafik T, Kameoka S, Ukisu Y, et al. In situ diffuse reflectance infrared Fourier transform spectroscopy study of surface species involved in NOx reduction by ethanol over alumina supported silver catalyst. J Mol Catal A Chem. 1998;136:203–11.

    Article  CAS  Google Scholar 

  28. Chary KVR, Lakshmi KS, Rao PVR, et al. Characterization and catalytic properties of niobia supported nickel catalysts in the hydrodechlorination of 1,2,4-trichlorobenzene. J Mol Catal A Chem. 2004;223:353–61.

    Article  CAS  Google Scholar 

  29. Damyanova S, Pawelec B, Arishtirova K, et al. Study of the surface and redox properties of ceria-zirconia oxides. Appl Catal A Gen. 2008;337:86–96.

    Article  CAS  Google Scholar 

  30. Cesara DV, Peréz CA, Salima VMM, Schmal M. Stability and selectivity of bimetallic Cu–Co/SiO2 catalysts for cyclohexanol dehydrogenation. Appl Catal A Gen. 1999;176:205–12.

    Article  Google Scholar 

  31. Noronha FB, Baldanza MAS, Monteiro RS, Aranda DAG, Ordine A, Schmal M. The nature of metal oxide on adsorptive and catalytic properties of Pd/MeOx/Al2O3 catalysts. Appl Catal A Gen. 2001;210:275–86.

    Article  CAS  Google Scholar 

  32. Gaki A, Anagnostaki O, Kioupis D, et al. Optimization of LaMO3 (M: Mn, Co, Fe) synthesis through the polymeric precursor route. J Alloys Compounds. 2008;451:305–8.

    Article  CAS  Google Scholar 

  33. Guimaraes AL, Dieguez LC, Schmal M. Surface sites of Pd/CeO2/Al2O3 catalysts in the partial oxidation of propane. J Phys Chem B. 2003;107:4311–9.

    Article  CAS  Google Scholar 

  34. Herrmann JM, Ramaroson E, Tempere JF. Semiconductivity study of ceria-supported nickel related to its methanation catalytic activity. Appl Catal A Gen. 1989;53(2–3):117–34.

    Article  CAS  Google Scholar 

  35. Hong WJ, Iwamoto S, Inoue M. Direct NO decomposition over a Ce-Mn mixed oxide modified with alkali and alkaline earth species and CO2-TPD behavior of the catalysts. Catal Today. 2011;164:489–94.

    Article  CAS  Google Scholar 

  36. Hong WJ, Ueda M, Iwamoto S, et al. Effect of Fe content on physical properties of BaO-CeOx-FeOy catalysts for direct NO decomposition. Appl Catal B Environ. 2011;106:142–8.

    CAS  Google Scholar 

  37. Hoost TE, Otto K. Temperature-programmed study of the oxidation of palladium alumina catalysts and their lanthanium modification. Appl Catal A Gen. 1992;92(1):39–58.

    Article  CAS  Google Scholar 

  38. Khamman O, Yimnirun R, Ananta S. Effect of calcination conditions on phase formation and particle size of nickel niobate powders synthesized by solid-state reaction. Mater Lett. 2007;61:639–43.

    Article  CAS  Google Scholar 

  39. Ko EI, Weissman JG. Structures of niobium oxide and their implications on chemical behavior. Catal Today. 1990;8:27–36.

    Article  CAS  Google Scholar 

  40. Kongzhai L, Hua W, Yonggang W, et al. Preparation and characterization of Ce1-xFexO2 complex oxides and its catalytic activity for methane selective oxidation. J Rare Earths. 2008;26(2):245–9.

    Article  Google Scholar 

  41. Kunimori K, Oyanagi H, Shindo H. Nickel-niobia interaction induced by the reduction of NiNb2O6 supported on SiO2. Catal Lett. 1993;21:283–90.

    Article  CAS  Google Scholar 

  42. Laguna OH, Centeno MA, Boutonnet M, et al. Fe-doped ceria solids synthesized by the microemulsion method for CO oxidation reactions. Appl Catal B Environ. 2011;106:621–9.

    Article  CAS  Google Scholar 

  43. Lee JH, Schmieg SJ, Oh SH. Improved NOx reduction over the staged Ag/Al2O3 catalyst system. Appl Catal A Gen. 2008;342:78–86.

    Article  CAS  Google Scholar 

  44. Loof P, Kasemo B, Keck KE. Oxygen storage capacity of noble-metal car exhaust catalysts containing nickel and cerium. J Catal. 1989;118(2):339–48.

    Article  Google Scholar 

  45. Marcelo M, Pereira A, Evandro B, Pereira B, Lam Yiu Lau C, Schmal M. The nickel–niobia–silica interactions at low nickel contents. Catal Today. 2000;57:291–6.

    Article  Google Scholar 

  46. Marécot P, Fakche A, Kellali B, Mabilon G, Prigent M, Barbier J. Propane and propene oxidation over platinum and palladium on alumina. Effects of chloride and water. Appl Catal B Environ. 1994;3:283–94.

    Article  Google Scholar 

  47. McCabe RW, Jen HW, Chun W, Grahan GW, Haack LP, Straccia A, Benson D. Evaluation of low-grade ceria as a Pd-catalyst support material. Appl Catal A Gen. 1999;184:265–72.

    Article  CAS  Google Scholar 

  48. Monteiro RS, Dieguez LC, Schmal M. The role of Pd precursors in the oxidation of carbon monoxide over Pd/Al2O3 and Pd/CeO2/Al2O3 catalysts. Catal Today. 2001;65:77–89.

    Article  CAS  Google Scholar 

  49. Noronha FB, Aranda DAG, Ordine AP, Schmal M. The promoting effect of Nb2O5 addition to Pd/Al2O3 catalysts on propane oxidation. Catal Today. 2000;57:275–82.

    Article  CAS  Google Scholar 

  50. Nowak I, Ziolek M. Niobium compounds: preparation, characterization and application in heterogeneous catalysis. Chem Rev. 1999;99:3603–24.

    Article  CAS  Google Scholar 

  51. Orge CA, Órfão JJM, Pereira MFR. Ceria and cerium-based mixed oxides as ozonation catalysts. Chem Eng J. 2012;200–202:499–505.

    Article  Google Scholar 

  52. Otto K, Andino JM, Parks CL. The influence of platinum concentration and particle size on the kinetics of propane oxidation over Pt/g-alumina. J Catal. 1991;131:243–51.

    Article  CAS  Google Scholar 

  53. Peña MA, Fierro JLG. Chemical structures and performance of perovskite oxides. Chem Rev. 2001;101(7):1981–2017.

    Article  Google Scholar 

  54. Pérez-Alonso FJ, Granados ML, Ojeda M, et al. Chemical structures of coprecipitated Fe-Ce mixed oxides. Chem Mater. 2005;17:2329–39.

    Article  Google Scholar 

  55. Popa M, Calderon-Moreno JM. Lanthanum cobaltite nanoparticles using the polymeric precursor method. J Eur Ceram Soc. 2009;29(11):2281–7.

    Article  CAS  Google Scholar 

  56. Quinelato AL, Longo ER, Leite MI, et al. Synthesis and sintering of ZrO2-CeO2 powder by use of polymeric precursor based on Pechini process. J Mater Sci. 2001;36:3825–30.

    Article  CAS  Google Scholar 

  57. Salasc S, Perrichon V, Primet M, Chevrier M, Mathis F, Moral N. Magnetic study of the interaction of hydrogen with a Pt/CeO2-Al2O3 catalyst: influence of the presence of chlorine. Catal Today. 1999;50:227–35.

    Article  CAS  Google Scholar 

  58. Schmal M, Aranda DAG, Noronha FB, Guimareas AL, Monteiro RS. Oxidation and reduction effects of propane-oxygen on Pd-chlorine/alumina catalysts. Catal Lett. 2000;64:163–9.

    Article  CAS  Google Scholar 

  59. Schmal M, Pereira MM, Lam YL. The nickel-niobia-silica interactions at low nickel contents. Catal Today. 2000;57(3):291–6.

    Google Scholar 

  60. Trovarelli A. Catalysis by ceria and related materials, vol. 2. 1st ed. London: Imperial College Press; 2002.

    Book  Google Scholar 

  61. Veser G, Wright A, Caretta R. On the oxidation-reduction kinetics of palladium. Catal Lett. 1999;58:199–206.

    Article  CAS  Google Scholar 

  62. Wang D, Monnet F, Mirodatos C. Reaction kinetics and product selectivity in the oxidation of methane over Pd/Si3N4. Stud Surf Sci Catal. 2000;130:3561–6.

    Article  Google Scholar 

  63. Wang J, Zhang B, Shen M, et al. Effects of Fe-doping of ceria-based materials on their microstructural and dynamic oxygen storage and release properties. J Sol-Gel Sci Technol. 2011;58:259–68.

    Article  CAS  Google Scholar 

  64. Wojcieszak R, Jsaik A, Monteverdi S, et al. Nickel niobia interaction in non-classical Ni/Nb2O5 catalysts. J Mol Catal A Chem. 2006;256:225–33.

    Article  CAS  Google Scholar 

  65. Ziolek M. Niobium-containing catalysts - the state of the art. Catal Today. 2003;78:47–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmal, M. (2016). Variables Influencing Final Properties of Catalysts. In: Heterogeneous Catalysis and its Industrial Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-09250-8_8

Download citation

Publish with us

Policies and ethics