Advertisement

Textural and Thermochemical Characterizations

  • Martin Schmal
Chapter

Abstract

Textural and thermo-chemical methods of characterizations of solid materials, metals and oxides.

Keywords

Surface area TGA TPR TPO TPD TPRS Volume 

References

  1. 1.
    Moulijn JA, van Leeuwen PWNM, van Santen RA. Catalysis. 2nd ed. Amsterdam: Elsevier; 1995.Google Scholar
  2. 2.
    Dubinin MM. Surface and nanomolecular catalysis. Zhur Phys Chem. 1960;34:959.Google Scholar
  3. 3.
    Dubinin MM. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev. 1960;60:235.CrossRefGoogle Scholar
  4. 4.
    Gregg SJ, Sing KSW. Adsorption. Surface area and porosity. 2nd ed. London: Academic; 1982.Google Scholar
  5. 5.
    Brunauer S, Deming LS, Deming WS, Teller E. On a theory of the van der Waals adsorption of gases. J Am Soc. 1940;62:1723.CrossRefGoogle Scholar
  6. 6.
    Langmuir I, Langmuir I. The constitution and fundamental properties of solids. J Am Chem Soc. 1929;6:451.Google Scholar
  7. 7.
    Brunauer S, Emmett PH, Teller E. Dissolution rates of cadmium and bismuth tellurides as a function of pH, temperature and dissolved oxygen. J Am Soc. 1938;60:309.CrossRefGoogle Scholar
  8. 8.
    Barret EP, Jayner LS, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73:373.CrossRefGoogle Scholar
  9. 9.
    Lippens BC, Linsen BG, de Boer JH. Studies on pore systems in catalysts I. The adsorption of nitrogen; apparatus and calculation. J Catal. 1964;3:32.Google Scholar
  10. 10.
    Dubinin MM. Adsorption in micropores. J Coll Interf Sci. 1967;23:487.CrossRefGoogle Scholar
  11. 11.
    Dantas Ramos AL, da Silva AP, Aranda DAG, Schmal M. Appl Catal A Gen. 2004;277:71.CrossRefGoogle Scholar
  12. 12.
    Langmuir I. Advances in catalysis, volume 9. J Am Chem Soc. 1916;38:2267.Google Scholar
  13. 13.
    Kummer JT, Podgursk HH, Spencer WB, Emmett PH. Synthesis. The addition of radioactive alcohol. J Am Chem Soc. 1951;73(2):564–9.CrossRefGoogle Scholar
  14. 14.
    Boudart M, Mariadassu GD. Kinetics of heterogeneous catalytic reactions. Princeton, NJ: Princeton University Press; 1982.Google Scholar
  15. 15.
    Benson JE, Boudart M. Hydrogen-oxygen titration method for the measurement of supported platinum surface areas. J Catal. 1965;4:704.CrossRefGoogle Scholar
  16. 16.
    Aben PC. Palladium areas in supported catalysts: determination of palladium surface areas in supported catalysts by means of hydrogen chemisorption. J Catal. 1968;10:224.CrossRefGoogle Scholar
  17. 17.
    Silva RRCM, Schmal M, Frety F, Dalmon JA. Effect of the support on the fischer-tropsch synthesis with Co/Nb2O5 catalysts. J Chem Soc Faraday Trans. 1993;89(21):3975.CrossRefGoogle Scholar
  18. 18.
    Souza MMVM, Aranda DAG, Schmal M. Palladium areas in supported catalysts: determination of palladium surface areas in supported catalysts by means of hydrogen chemisorption. J Catal. 2001;204(2):498.CrossRefGoogle Scholar
  19. 19.
    Barbier J. Deactivation of reforming catalysts by coking—a review. Appl Catal. 1986;23:225.CrossRefGoogle Scholar
  20. 20.
    Leocadio ICL, Minana CV, Braun S, Schmal M. Effect of experimental conditions on the parameters used for evaluating the performance of the catalyst Mo/Al2O3 in diesel soot combustion. Appl Catal B Environ. 2008;84:843–9.CrossRefGoogle Scholar
  21. 21.
    Alberton AL, Schwaab M, Schmal M, Pinto JC. Experimental errors in kinetic tests and its influence on the precision of estimated parameters. Part I—Analysis of first-order reactions. Chem Eng J. 2009;155:816–23.CrossRefGoogle Scholar
  22. 22.
    Redhead PA. Thermal desorption of gases. Vacuum. 1963;12:203.CrossRefGoogle Scholar
  23. 23.
    Masel RI. Principles of adsorption and reaction on solid surfaces, Wiley series in chemical engineering. New York: Wiley; 1996.Google Scholar
  24. 24.
    Taylor TL, Weinberg WH. A method for assessing the coverage dependence of kinetic parameters: application to carbon monoxide desorption from iridium (110). Surf Sci. 1978;78(2):259.CrossRefGoogle Scholar
  25. 25.
    de Carvalho MCNA, Passos FB, Schmal M. The behavior of Cu/ZSM-5 in the oxide and reduced form in the presence of NO and methanol. Appl Catal A. 2000;193:265.CrossRefGoogle Scholar
  26. 26.
    Ribeiro NFP, Mendes FMT, Perez CAC, Souza MMVM, Schmal M. Selective CO oxidation with nano gold particles-based catalysts over Al2O3 and ZrO2. Appl Catal A Gen. 2008;347(1):62.CrossRefGoogle Scholar
  27. 27.
    Anderson JR, Foger K, Breakspere RJ. Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts. J Catal. 1979;57(3):458.CrossRefGoogle Scholar
  28. 28.
    Aranda DAG, Schmal M. Ligand and geometric effects on Pt/Nb2O5 and Pt–Sn/Nb2O5 catalysts. J Catal. 1997;171(2):398.CrossRefGoogle Scholar
  29. 29.
    Schmal M, Vargas DC, Souza MMVM, Guarido CE. Can J Chem Eng. 2011;89(5):1166–75.CrossRefGoogle Scholar
  30. 30.
    Yee A, Morrison SJ, Idriss H. A study of ethanol reactions over Pt/CeO2 by temperature programmed desorption and in situ FT-IR spectroscopy: evidence of benzene formation. J Catal. 2000;191:30.CrossRefGoogle Scholar
  31. 31.
    Mishra BG, Rao GR. Mol J Catal A. 2006;243:204–13.CrossRefGoogle Scholar
  32. 32.
    Pokrovski KA, Bell AT. J Catal. 2006;244:43–51.CrossRefGoogle Scholar
  33. 33.
    Neto RC, Schmal M. Synthesis of CeO2 and CeZrO2 mixed oxide nanostructured catalysts for the iso-syntheses reaction. Appl Catal A Gen. 2013;450:131.CrossRefGoogle Scholar
  34. 34.
    Alberton AL, Souza MMVM, Schmal M. Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catal Today. 2007;123:257.CrossRefGoogle Scholar
  35. 35.
    Rodriguez JA, Hanson JC, Frenkel AI, Kim HY, Perez M. Experimental and theoretical studies on the reaction of H2 with NiO: role of O vacancies and mechanism for oxide reduction. J Am Chem Soc. 2002;124:346.CrossRefGoogle Scholar
  36. 36.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702.CrossRefGoogle Scholar
  37. 37.
    Monti DAM, Baiker A. Temperature-programmed reduction. Parametric sensitivity and estimation of kinetic parameters. J Catal. 1983;83(2):323.CrossRefGoogle Scholar
  38. 38.
    de Souza MMVM, Clavé L, Dubois V, Perez CAC, Schmal M. Temperature-programmed reduction. Parametric sensitivity and estimation of kinetic parameters. Appl Catal A. 2004;272:133.CrossRefGoogle Scholar
  39. 39.
    Li C, Chen YW. Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: effects of the preparation method. Thermochim Acta. 1995;256:457.CrossRefGoogle Scholar
  40. 40.
    Richardson JT, Twigg MV. Reduction of impregnated NiO/α-A12O3 association of A13+ ions with NiO. Appl Catal A. 1998;167:57.CrossRefGoogle Scholar
  41. 41.
    Richardson JT, Lei M, Thrk B, Forester K, Twigg MV. Reduction of model steam reforming catalysts: NiO/α-Al2O3. Appl Catal A. 1994;110:217.CrossRefGoogle Scholar
  42. 42.
    Pompeo F, Nichio NN, Souza MMVM, Cesar DV, Ferretti OA, Schmal M. Study of Ni and Pt catalysts supported on α-Al2O3 and ZrO2 applied in methane reforming with CO2. Appl Catal A. 2007;316:175.CrossRefGoogle Scholar
  43. 43.
    Mendes FMT, Perez CAC, Noronha FB, Souza CDD, Cesar DV, Freund HJ, Schmal M. Fischer–Tropsch synthesis on anchored Co/Nb2O5/Al2O3 catalysts: the nature of the surface and the effect on chain growth Fischer–Tropsch synthesis on anchored Co/Nb2O5/Al2O3 catalysts: the nature of the surface and the effect on chain growth. J Phys Chem B. 2006;110:9155–63.CrossRefGoogle Scholar
  44. 44.
    Mendes FMT, Perez CAC, Noronha FB, Schmal M. TPSR of Co Hydrogenation on Co/Nb2O5/Al2O3. Catal Today. 2005;101:45–50.CrossRefGoogle Scholar
  45. 45.
    Haller G, Resasco DE. The changes in the catalytic properties of Rh/TiO2 caused by raising the reduction. Adv Catal. 1989;36:173.Google Scholar
  46. 46.
    Hu Z, Kunimori K, Uchijima T. Interaction of hydrogen and oxygen with niobia-supported and niobia-promoted rhodium catalysts. Appl Catal A Gen. 1999;69:253.CrossRefGoogle Scholar
  47. 47.
    Rodas-Grapain A, Arenas-Alatorre J, Gómes-Cortés A. Catal Today. 2005;107–108:168–74.CrossRefGoogle Scholar
  48. 48.
    Schmal M, Perez CA, da Silva VT, Padilha LF. Hydrogen and ethylene production from partial oxidation of methane on CuCe, CuZr mixed oxides and ZrO2 catalysts. Appl Catal A Gen. 2010;375:205–12.CrossRefGoogle Scholar
  49. 49.
    Bera P, Priolkar KR, Sarode PR. Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques: formation of a Ce1-x Cu x O2-δ solid solution. Chem Mater. 2002;14(8):3591.CrossRefGoogle Scholar
  50. 50.
    Rodas-Grapain A, Arenas-Alatorre J, Gómes-Cortés A. Catalytic properties of a CuO–CeO2 sorbent-catalyst for de-SOx reaction. Catal Today. 2005;107–108:168.CrossRefGoogle Scholar
  51. 51.
    Araujo LRR, Schmal M. The calcination effects on Pt/HZSM-5 catalysts in the aromatization of propane. Appl Catal A. 2000;203(2):275.CrossRefGoogle Scholar
  52. 52.
    Barbier J, Marecot P, Martin N, Elassal L, Maurel R. Deactivation and poisoning of catalysts. Catal Deactiv. 1980;53Google Scholar
  53. 53.
    Margitfalvi J, Szedlacsek P, Heged M, Nagry F. Reaction kinetic approach to study activity, selectivity and deactivation of Pt/Al2O3 in n-hexane conversion. Appl Catal. 1985;15:69.CrossRefGoogle Scholar
  54. 54.
    Espinat D, Freund E, Dexpert H, Martino G. Localization and structure of carbonaceous deposits on reforming catalysts. J Catal. 1990;126:496.CrossRefGoogle Scholar
  55. 55.
    Wolf EE, Alfami F. Catalyst deactivation by coking. Catal Rev Sci Eng. 1982;24:329.CrossRefGoogle Scholar
  56. 56.
    Afonso JC, Schmal M, Cardoso JN, Frety R. Hydrotreatment of Iraty shale oil. Behavior of the aromatic fraction. Ind Eng Chem Res. 1991;30:2133.CrossRefGoogle Scholar
  57. 57.
    Aranda DAG, Afonso JC, Frety R, Schmal M. Temperature programmed oxidation of deactivated Pt/Nb2O5 catalysts. Stud Surf Sci Catal. 1997;3:335.CrossRefGoogle Scholar
  58. 58.
    Leocadio ICL, Braun S, Schmal M. Diesel soot combustion on Mo/Al2O3 and V/Al2O3 catalysts. Investigation of the active catalytic species. J Catal. 2004;223:114–21.CrossRefGoogle Scholar
  59. 59.
    Stanmore BR, Brilhac JF, Gilot P. The oxidation of soot: a review of experiments, mechanisms and models. Carbon. 2001;39:2247.CrossRefGoogle Scholar
  60. 60.
    Du Z, Sarofim AF, Longwell JP. Activation energy distribution in… modeling and application to the soot-oxygen system. Energy Fuels. 1990;4:296.CrossRefGoogle Scholar
  61. 61.
    Ahmed S, Back MH, Roscoe JM. A kinetic model for the low temperature oxidation of carbon. Combust Flame. 1987;70:1.CrossRefGoogle Scholar
  62. 62.
    Schmal M, Perez CA, Silva VT, Padilha LF. Appl Catal A Gen. 2010;375:205–12.CrossRefGoogle Scholar
  63. 63.
    Mori H, Wen C, Otomo J, Eguchi K, Takahashi H. Appl Catal A. 2003;245:79.CrossRefGoogle Scholar
  64. 64.
    Rostrup-Nielsen JR. Science and technology, vol. 5. Berlin: Springer; 1984.Google Scholar
  65. 65.
    Hoffer T, Dobos S, Guczi L. Structure and methanol activation: niobia promoted Pt/Al2O3 catalysts. Catal Today. 1993;16:435.CrossRefGoogle Scholar
  66. 66.
    Mul G, Neeft JPA, Kapteijn F, Makkee M, Moulijn JA. Nanophase catalytic oxides: I. Synthesis of doped cerium oxides as oxygen storage promoters. Appl Catal B. 1995;6:339.CrossRefGoogle Scholar
  67. 67.
    Liu S, Obuchi A, Uchisawa J, Nanba T, Kushiyama S. An exploratory study of diesel soot oxidation with NO2 and O2 on supported metal oxide catalysts. Appl Catal B. 2002;37:309.CrossRefGoogle Scholar
  68. 68.
    de Mello LF, Noronha FB, Schmal M. Interaction of hydrogen and oxygen with niobiasupported and niobia-promoted rhodium catalysts. J Catal. 2003;220:358.CrossRefGoogle Scholar
  69. 69.
    Idriss H, Diagne C, Hindermann JP, Kiennemann A, Barteau MA. Reactions of acetaldehyde on CeO2 and CeO2-supported catalysts. J Catal. 1995;155:219.CrossRefGoogle Scholar
  70. 70.
    Jin R, Chen Y, Li W, Cui W, Ji Y, Yu C, Jiang Y. Mechanism for catalytic partial oxidation of methane to syngas over a Ni/Al2O3 catalyst. Appl Catal A. 2000;201:71.CrossRefGoogle Scholar
  71. 71.
    Aneggi E, Boaro M, De Leitenburg C, et al. Insights into the redox properties of ceria based oxides and their implications in catalysis. J Alloys Compounds. 2006;408–412:1096–102.CrossRefGoogle Scholar
  72. 72.
    Cagnoli MV, Alvarez AM, Gallegos NG, et al. Mossbauer and XPS spectroscopies studies of SMSI effect on Fe/Nb2O5 catalysts for the Fischer–Tropsch synthesis. Appl Catal A Gen. 2007;326:113–9.CrossRefGoogle Scholar
  73. 73.
    Chary KVR, Lakshmi KS, Rao PVR, et al. Characterization and catalytic properties of niobia supported nickel catalysts in the hydrodechlorination of 1,2,4-trichlorobenzene. J Mol Catal A Chem. 2004;223:353–61.CrossRefGoogle Scholar
  74. 74.
    Helali Z, Markovits A, Minot C, et al. First row transition metal atoms adsorption on rutile TiO2 (110) surface. Struct Chem. 2012;23:1309–21.CrossRefGoogle Scholar
  75. 75.
    Hong WJ, Iwamoto S, Inoue M. Direct NO decomposition over a Ce-Mn mixed oxide modified with alkali and alkaline earth species and CO2-TPD behavior of the catalysts. Catal Today. 2011;164:489–94.CrossRefGoogle Scholar
  76. 76.
    Hong WJ, Ueda M, Iwamoto S, et al. Effect of Fe content on physical properties of BaO-CeOx-FeOy catalysts for direct NO decomposition. Appl Catal B Environ. 2011;106:142–8.Google Scholar
  77. 77.
    Jasik A, Wojcieszak R, Monteverdi S, et al. Study of nickel catalysts supported on Al2O3, SiO2 or Nb2O5 oxides. J Mol Catal A Chem. 2005;242:81–90.CrossRefGoogle Scholar
  78. 78.
    Laguna OH, Centeno MA, Boutonnet M, et al. Fe-doped ceria solids synthesized by the microemulsion method for CO oxidation reactions. Appl Catal B Environ. 2011;106:621–9.CrossRefGoogle Scholar
  79. 79.
    Liu J, Xue D, Li K. Single-crystalline nanoporous Nb2O5 nanotubes. Nanosc Res Lett. 2011;6:138–45.CrossRefGoogle Scholar
  80. 80.
    Liu L, Cao Y, Sun W, et al. Morphology and nanosize effects of ceria from different precursors on the activity for NO reduction. Catal Today. 2011;175:48–54.CrossRefGoogle Scholar
  81. 81.
    Qiao D, Lu G, Liu X, et al. Preparation of Ce1-xFexO2 solid solution and its catalytic performance for oxidation of CH4 and CO. J Mater Sci. 2011;46:3500–6.CrossRefGoogle Scholar
  82. 82.
    Quinelato AL, Longo E, Leite ER, et al. Synthesis and sintering of ZrO2-CeO2 powder by use of polymeric precursor based on Pechini process. J Mater Sci. 2001;36:3825–30.CrossRefGoogle Scholar
  83. 83.
    Rojas E, Guerrero-Pérez MO, Bañares MA. Niobia-supported nanoscaled bulk-NiO catalysts for the ammoxidation of ethane into acetonitrile. Catal Lett. 2013;143(1):31–42.CrossRefGoogle Scholar
  84. 84.
    Shen Q, Lu G, Du C, et al. Role and reduction of NOx in the catalytic combustion of soot over iron-ceria mixed oxide catalysts. Chem Eng J. 2013;218:164–72.CrossRefGoogle Scholar
  85. 85.
    Sudarsanam P, Mallesham B, Reddy PS, et al. Nano-Au/CeO2 catalysts for CO oxidation: Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Appl Catal B Environ. 2014;144:900–8.CrossRefGoogle Scholar
  86. 86.
    Wang J, Shen M, Wang J, et al. Preparation of FexCe1-xOy solid solution and its application in Pd-only three-way catalysts. J Environ Sci. 2012;24(4):757–64.CrossRefGoogle Scholar
  87. 87.
    Wang J, Zhang B, Shen M, et al. Effects of Fe-doping of ceria-based materials on their microstructural and dynamic oxygen storage and release properties. J Sol-Gel Sci Technol. 2011;58:259–68.CrossRefGoogle Scholar
  88. 88.
    Wojcieszak R, Jsaik A, Monteverdi S, et al. Nickel niobia interaction in non-classical Ni/Nb2O5 catalysts. J Mol Catal A Chem. 2006;256:225–33.CrossRefGoogle Scholar
  89. 89.
    Yan C, Xue D. Formation of Nb2O5 nanotube arrays through phase transformation. Adv Mater. 2008;20:1055–8.CrossRefGoogle Scholar
  90. 90.
    Yao X, Tang C, Ji Z, et al. Investigation of the physicochemical properties and catalytic activities of Ce0.67 M0.33O2 (M = Zr4+, Ti4+, Sn4+) solid solutions for NO removal by CO. Catal Sci Technol. 2013;3:688–98.CrossRefGoogle Scholar
  91. 91.
    Yue L, Zhang XM. Structural characterization and phtocatalytic behaviors of doped CeO2 nanoparticles. J Alloys Compounds. 2009;475:702–5.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Martin Schmal
    • 1
    • 2
  1. 1.Chem.Eng. Dept.Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.University of São Paulo (USP)São PauloBrazil

Personalised recommendations