Skip to main content

Nanostructured Catalysts

  • Chapter
  • First Online:
Heterogeneous Catalysis and its Industrial Applications
  • 1808 Accesses

Abstract

Nanostructured systems are of great interest from points of view of basic science and technological applications. Within the topic of catalysis, should be highlighted the properties associated with different morphologies, activities and selectivities, which are strongly affected by the shape and particle size; in the case of crystalline metallic phases are oriented crystal faces. The reactions that are influenced by these factors (morphological) are known as structure sensitive reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aiken III JD, Finke RG. J Mol Catal A. 1999;135:1–44.

    Article  Google Scholar 

  2. Burda C, Chen X, Narayanan R, El-Sayed MA. Chem Rev. 2005;105:1025–102.

    Article  CAS  Google Scholar 

  3. Narayanan R, El-Sayed MA. Nano Lett. 2004;4:1343–8.

    Article  CAS  Google Scholar 

  4. Wikipedia: the free encyclopedia.htm. file:///D:/Carbon%20nanotube%20

    Google Scholar 

  5. Antolini E. Appl Catal Environ. 2012;123–124:52–68.

    Article  CAS  Google Scholar 

  6. Roucoux A, Schulz J, Patin H. Chem Rev. 2002;102:3757–78.

    Article  CAS  Google Scholar 

  7. Moujlijn JA, van Leeuwen PWN, van Santen RA. Catalysis. In: Geus et al, editors. Studies in surface science and catalysis, Chap. 9; 1995, vol. 79, p. 339.

    Google Scholar 

  8. Wang X, Zhuang J, Peng Q, Li Y. Nature. 2005;437:121–4.

    Article  CAS  Google Scholar 

  9. Cushing BL, Kolesnichenko VL, O’Connor CJ. Chem Rev. 2004;104:3893–946.

    Article  CAS  Google Scholar 

  10. Weare WW, Reed SM, Warner MG, Hutchinson JE. Improved synthesis of small phosphine-stabilized gold nanoparticles. J Amer Chem Soc. 2000;122:12890–1.

    Article  CAS  Google Scholar 

  11. Yao H, Momozawa O, Hamatami T, Kimura K. Stepwise size selective extraction of carboxylate-modified gold nanoparticles from an aqueous suspension into toluene with trioctylammonium cations. Chem Mater. 2001;13:4692–7.

    Article  CAS  Google Scholar 

  12. Okitsu K, Mizukoshi Y, Bandow H, Maeda Y, Yamamoto T, Nagata Y. Formation of the noble metal nanoparticles by ultrasonic irradiation. Ultrason Sonochem. 1996;3:S249–51.

    Article  CAS  Google Scholar 

  13. Okitsu K, Bandow H, Maeda Y. Sonochemical preparation of ultrafine palladium nanoparticles. Chem Mater. 1996;8:315–7.

    Article  CAS  Google Scholar 

  14. Leff DV, Brandt L, Heath JR. Synthesis and characterization of hydrophobic organically soluble gold nanocrystals functionalized with primary amines. Langmuir. 1996;12:4723–30.

    Article  CAS  Google Scholar 

  15. Teranishi T, Miyake M. Size control of palladium nanoparticles and their crystal structures. Chem Mater. 1998;10:594–600.

    Article  CAS  Google Scholar 

  16. El-Sayed MA. Acc Chem Res. 2001;34:257–64.

    Article  CAS  Google Scholar 

  17. Toniolo FS, Moya S, Schmal M. Adv Chem Lett. 2013;1:1–8.

    Article  CAS  Google Scholar 

  18. Moya SF, Martins RL, Ota A, Kunkes EL, Behrens M, Schmal M. Appl Catal Gen. 2012;411–412:105–13.

    Article  CAS  Google Scholar 

  19. Ota A, Kunkes EL, Kröhnert J, Schmal M, Behrens M. Appl Catal Gen. 2013;452:203–13.

    Article  CAS  Google Scholar 

  20. Suslick KS, Hyeon T, Fang M, Cichowlas AA. Mater Sci Eng A. 1995;204:186–92.

    Article  Google Scholar 

  21. Narayanan R, El-Sayed MA. J Phys Chem B. 2005;109:12663–76.

    Article  CAS  Google Scholar 

  22. Lee MB, Yang QY, Ceyer ST. J Chem Phys. 1987;87:2724–41.

    Article  CAS  Google Scholar 

  23. Valden M, Pere J, Xiang N, Pessa M. Chem Phys Lett. 1996;257:289–96.

    Article  CAS  Google Scholar 

  24. Beebe Jr TP, Goodman DW, Kay BD, Yates JT. Kinetics of the activated dissociative adsorption of methane on the low index planes of Ni single crystal surfaces. J Am Chem Soc. 1987;87:2305–15.

    CAS  Google Scholar 

  25. Choudhary TV, Goodman DW. Top Catal. 2002;20:35–42.

    Article  CAS  Google Scholar 

  26. Goodman DW. J Phys Chem. 1996;100:13090–102.

    Article  CAS  Google Scholar 

  27. In YZ, Sun J, Yi J, Lin JD, Chen HB, Liao DW. J Mol Struct Theochem. 2002;587:63–71.

    Article  Google Scholar 

  28. Ciobica IM, Van Santen RA. J Phys Chem B. 2002;106:6200–5.

    Article  CAS  Google Scholar 

  29. Moya SF. tese de doutorado. COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ; 2008.

    Google Scholar 

  30. Teranishi T, Miyake M. Chem Mat. 1999;10:594–600.

    Article  Google Scholar 

  31. Thompson LH, Doraiswamy LK. Ind Eng Chem Res. 1999;38:1215–49.

    Article  CAS  Google Scholar 

  32. Oh H-S, Yang KJ, Costello CK, Wang YM, Bare SR, Hung HH, Kung MC. J Catal. 2002;210:375–86.

    Article  CAS  Google Scholar 

  33. Lee S-J, Gavriilidis A. J Catal. 2002;206:305–13.

    Article  CAS  Google Scholar 

  34. Haruta M. J New Mater Electrochem Syst. 2004;7:163–72.

    CAS  Google Scholar 

  35. Wolf A, Schüth F. Appl Catal A. 2002;226:1–13.

    Article  CAS  Google Scholar 

  36. Ribeiro NFP, Mendes FMT, Perez CAC, Souza MMVM, Schmal M. Appl Catal A. 2009;347:62–71.

    Article  CAS  Google Scholar 

  37. Turkevich J, Stevenson PC, Killier J. Disc Faraday Soc. 1951;11:55.

    Article  Google Scholar 

  38. Turkevich J. Gold Bull. 1985;18:86.

    Article  CAS  Google Scholar 

  39. Duff DG, Baiker A, Edwards PP. Langmuir. 1993;9:2301–9.

    Article  CAS  Google Scholar 

  40. Duff DG, Baiker A, Gameson I, Edwards PP. Langmuir. 1993;9:2310–7.

    Article  CAS  Google Scholar 

  41. Fierro JLG, Peña MA. Chem Rev. 2001;101:1981–2018.

    Article  CAS  Google Scholar 

  42. Tejuca LG, Fierro JLG, Tascon JMD. Adv Catal. 1989;36:237–328.

    CAS  Google Scholar 

  43. Lin J, Yu M, Lin C, Liu X. J Phys Chem C. 2007;111:5835.

    Article  CAS  Google Scholar 

  44. Magalhães RNSH, Toniolo FS, da Silva VT, Schmal M. Appl Catal A Gen. 2010;388:216–24.

    Article  CAS  Google Scholar 

  45. Ko E-Y, Park ED, Seo KW, Lee HC, Lee D, Kim S. Catal Today. 2006;116:377.

    Article  CAS  Google Scholar 

  46. Białobok B, TrawczynSki J, MisTa W, Zawadzki M. Appl Catal B. 2007;72:395.

    Article  CAS  Google Scholar 

  47. Oliva C, Cappelli S, Kryukov A, Chiarello GL, Vishniakov AV, Forni L. J Mol Catal A Chem. 2006;255:36.

    Article  CAS  Google Scholar 

  48. Wen Y, Zhang C, He H, Yu Y, Teraoka Y. Catal Today. 2007;126:400–5.

    Article  CAS  Google Scholar 

  49. Forni L, Oliva C, Vatti FP, Kandala MA, Ezerets AM, Vishniakov AV. Appl Catal B. 1996;7:269–84.

    Article  CAS  Google Scholar 

  50. French SA, Catlow CRA, Oldman RJ, Rogers SC, Axon SA. Chem Commun. 2002;22:2706–7.

    Article  Google Scholar 

  51. Viswanathan B, George S. React Kinet Catal Lett. 1985;27:321–4.

    Article  CAS  Google Scholar 

  52. Shannon RD. Acta Crystallogr A. 1976;32:751.

    Article  Google Scholar 

  53. Hadjievl VG, Ilievl MN, Vergilovs IV. J Phys C Solid State Phys. 1988;21:L199–201.

    Article  Google Scholar 

  54. Wang ZL, Petroski JM, Green TC, El-Sayed MA. J Phys Chem B. 1999;102:6135–51.

    Google Scholar 

  55. Okitsu K, Yue A, Tanabe S, Matsumoto H. Chem Mater. 2000;12:3006–11.

    Article  CAS  Google Scholar 

  56. Miyazaki A, Balint I, Nakano Y. J Nanop Res. 2003;5:69–80.

    Article  CAS  Google Scholar 

  57. Duteil A, Schmid G, Meyer-Zaika W. J Chem Soc Chem Commun. 1995;31–32.

    Google Scholar 

  58. Kumar RV, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides form metal acetates. Chem Mater. 2000;12:2301–5.

    Article  CAS  Google Scholar 

  59. Liang J, Jiang X, Liu G, Deng Z, Zhuang J, Li F, Li Y. Characterization and synthesis of pure ZrO2 nanopowders via sonochemical methods. Mater Res Bull. 2003;38:161–8.

    Article  CAS  Google Scholar 

  60. Srivastava DN, Perkas N, Zaban A, Gedanken A. Sonochemistry as a tool for preparation of porous metal oxides. Pure Appl Chem. 2002;74:1509–17.

    Article  CAS  Google Scholar 

  61. Mizukoshi Y, Takagi E, Okuno H, Oshima R, Maeda Y, Nagata Y. Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultrason Sonochem. 2001;8:1–6.

    Article  CAS  Google Scholar 

  62. Hyeon T, Fang M, Suslick KS. Nanostructure molibdenum carbide: sonochemical synthesis and catalytic properties. J Amer Chem Soc. 1996;118:5492–3.

    Article  CAS  Google Scholar 

  63. Liu BS, Au CT. Appl Catal A. 2003;244:181–95.

    Article  CAS  Google Scholar 

  64. Zhu J, Aruna ST, Koltypin Y, Gedanken A. A novel method for the preparation of lead selenide: pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chem Mater. 2000;12:143–7.

    Article  CAS  Google Scholar 

  65. Qiu L, Wei Y, Pol VG, Gedanken A. Synthesis of a-MoTe2 nanorods via annealing Te-seeded amorphous MoTe2 nanoparticles. Inorg Chem. 2004;43:6061–6.

    Article  CAS  Google Scholar 

  66. Thompson LH, Doraiswamy LK. Sonochemistry : science and engineering. Ind Eng Chem Res. 1999;38:1215–49.

    Article  CAS  Google Scholar 

  67. Li H, Wang R, Hong Q, Chen L, Zhong Z, Koltypin Y, Calderon-Moreno J, Gedanken A. Ultrasound assisted polyol method for the preparation of SBA-15 supported ruthenium nanoparticles and the study of their catalytic activity on the partial oxidation of methane. Langmuir. 2004;20:8352–6.

    Article  CAS  Google Scholar 

  68. Dhas NA, Ekhtiarzadeh A, Suslick KS. Sonochemical preparation of supported hydrodesulfurization catalysts. J Amer Chem Soc. 2001;123:8310–6.

    Article  CAS  Google Scholar 

  69. Yang QY, Johnson AD, Maynard KJ, Ceyer ST. Synthesis of benzene from methane over a Ni(111) catalyst. J Am Chem Soc. 1989;111:8748–9.

    Article  CAS  Google Scholar 

  70. Narayanan R, El-Sayed MA. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solutions. Nano Lett. 2004;4:1343–8.

    Article  CAS  Google Scholar 

  71. Narayanan R, El-Sayed MA. Changing catalytic activity during colloidal platinum nanocrystals due to the shape changes: electron transfer reactions. J Amer Chem Soc. 2004;126:7194–5.

    Article  CAS  Google Scholar 

  72. Orlovskaya N, Steinmetz D, Yarmolenko S, PAI D, Sankar J, Goodenough J. Phys Rev B. 2005;72:220.

    Article  CAS  Google Scholar 

  73. Martins RL, Schmal M. J Braz Chem Soc. 2013;25(12):2399–408.

    Google Scholar 

  74. Martins RL, Baldanza MAS, Souza MMVM, Schmal M. Appl Catal A Gen. 2007;318:207.

    Article  CAS  Google Scholar 

  75. Moya SF, Martins RL, Schmal M. Appl Catal A Gen. 2011;396:159.

    Article  CAS  Google Scholar 

  76. Martins RL, Baldanza MAS, Alberton AL, Vasconcelos SM, Schmal M. Appl Catal B Environ. 2011;103:326.

    Article  CAS  Google Scholar 

  77. Martins RL, Schmal M. Appl Catal A Gen. 2006;308:133.

    Article  CAS  Google Scholar 

  78. Muradov NZ. Energy Fuels. 1998;12:41.

    Article  CAS  Google Scholar 

  79. Poirier MG, Sapundzhiev C. Int J Hydrogen Energy. 1997;22:429.

    Article  CAS  Google Scholar 

  80. Choudhary TV, Goodman DW. Catal Lett. 1999;59:93.

    Article  CAS  Google Scholar 

  81. Aiello R, Fiscus JE, zur Loye H-C, Amiridis MD. Appl Catal A. 2000;192:227.

    Article  CAS  Google Scholar 

  82. Alberton AL, Souza MMVM, Schmal M. Appl Catal B Environ. 2011;103(3–4):326.

    Google Scholar 

  83. Li Y, Zhang B, Xie X, Liu J, Xu Y, Shen W. J Catal. 2006;238:412.

    Article  CAS  Google Scholar 

  84. Ni X, Zhao Q, Zhou F, Zheng H, Cheng J, Li B. J Crystal Growth. 2006;289:299.

    Article  CAS  Google Scholar 

  85. Zhu LP, Liao GH, Yang Y, Xiao HM, Wang JF, Fu SY. Nanoscale Res Lett. 2009;4:550.

    Article  CAS  Google Scholar 

  86. Ni X, Zhang Y, Tian D, Zheng H, Wang X. J Crystal Growth. 2007;306:418.

    Article  CAS  Google Scholar 

  87. Gui Z, Liv J, Wang Z, Song L, Hu Y, Fan W, Chen D. J Phys Chem B. 2005;109:119.

    Article  CAS  Google Scholar 

  88. Winslow P, Bell AT. J Catal. 1985;94:385.

    Article  CAS  Google Scholar 

  89. Duncan TM, Winslow P, Bell AT. J Catal. 1985;93:1.

    Article  CAS  Google Scholar 

  90. Chorkendorff I, Alstrup I, Ullmann S. Surf Sci. 1990;227:291.

    Article  CAS  Google Scholar 

  91. Egeberg RC, Ullmann S, Astrup I, Mullins CB, Chorkendorff I. Surf Sci. 2002;497:183.

    Article  CAS  Google Scholar 

  92. Swang O, Faegri Jr K, Gropen O, Wahlgren U, Siegbahn P. Chem Phys. 1991;156:379.

    Article  CAS  Google Scholar 

  93. Xing B, Pang X-Y, Wang G-C, Shang Z-F. J Mol Catal A. 2010;315:187.

    Article  CAS  Google Scholar 

  94. Ribeiro NFP, Neto RCR, Moya SF, Souza MMVM, Schmal M. Int J Hydrogen Energy. 2010;35(21):11725–32.

    Article  CAS  Google Scholar 

  95. Jeevanandam P, Koltypin Y, Gedanken A. Mater Sci Eng. 2001;90:125–32.

    Article  Google Scholar 

  96. Cui H, Zayat M, Levy D. J Non-Cryst Solids. 2005;351:2102–6.

    Article  CAS  Google Scholar 

  97. Pompeo F, Gazzoli D, Nichio NN. Int J Hydrogen Energy. 2009;34:2260–8.

    Article  CAS  Google Scholar 

  98. Han YS, Li JB, Ning XS, Yang XZ, Chi B. Mater Sci Eng A. 2004;369:241–4.

    Article  CAS  Google Scholar 

  99. Guo J, Lou H, Zheng X. Carbon. 2007;45:1313–21.

    Google Scholar 

  100. Souza NA, Silva EB, Jardim PM, Sasaki JM. Mater Lett. 2007;61:4743–6.

    Article  CAS  Google Scholar 

  101. Avgouropoulos G, Ioannides T, Matralis H. Appl Catal B Environ. 2005;56:87–93.

    Article  CAS  Google Scholar 

  102. Patil KC, Aruna ST, Ekambaram S. Combustion synthesis. Curr Opin Solid State Mater. 1997;2:158–65.

    Article  CAS  Google Scholar 

  103. Patil KC, Aruna ST, Mimani T. Solid State Mater. 2002;6:505–12.

    Google Scholar 

  104. Varma A, Rogachev AS, Mukasyan AS, Hwang S. Adv Chem Eng. 1998;24:79–226.

    Article  CAS  Google Scholar 

  105. Kingsley JJ, Suresh K, Patil KC. J Mater Sci. 1990;25:1305–12.

    Article  CAS  Google Scholar 

  106. Minami T. J Alloy Compd. 2001;315:123–8.

    Article  Google Scholar 

  107. Alinejad B, Sarpoolaky H, Beitollahi A, Saberi A, Afshar S. Mater Res Bull. 2008;43:1188–94.

    Article  CAS  Google Scholar 

  108. Chen Y, Zhou W, Shao Z, Xu N. Catal Commun. 2008;9:1318–25.

    Google Scholar 

  109. Ringuedé A, Labrincha JA, Frade JR. Solid State Ion. 2001;131:549–57.

    Article  Google Scholar 

  110. Avgouropoulos G, Ioannides T. Appl Catal A. 2003;244:155–67.

    Article  CAS  Google Scholar 

  111. Areán CO, Mentruit MP, López AJL, Parra JB. Colloids Surf A. 2001;180:253–8.

    Article  Google Scholar 

  112. Sahli N, Roger AC, Kiennemann A, Libs S, Bettahar MM. Catal Today. 2006;113:187–93.

    Article  CAS  Google Scholar 

  113. Han YS, Li JB, Ning XS, Chi B. J Am Ceram Soc. 2004;87:1347–9.

    Article  CAS  Google Scholar 

  114. Hoffer BH, van Langeveld AD, Jannssens J-P, Bonné RLC, Martin C, Moulijn JA. J Catal. 2000;192:432–40.

    Article  CAS  Google Scholar 

  115. Neto CRR, Schmal M. Appl Catal A Gen. 2013;450:131–2.

    Article  CAS  Google Scholar 

  116. Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S. J Phys Chem B. 2000;104:11110–6.

    Article  CAS  Google Scholar 

  117. Khaodee W, Jongsomjit B, Assabumrungrat S, Praserthdam P, Goto S. Catal Commun. 2009;10:494–501.

    Article  CAS  Google Scholar 

  118. Reddy BM, Khan A. Catal Surv. 2005;9:155–71.

    Article  CAS  Google Scholar 

  119. Su C, Li J, He D, Cheng Z, Zhu Q. Appl Catal A. 2000;202:81–9.

    Article  CAS  Google Scholar 

  120. Postula WS, Feng Z, Philip CV, Akgerman A, Anthony RG. J Catal. 1994;135:126–31.

    Article  Google Scholar 

  121. Feng Z, Postula WS, Akgerman A, Anthony RG. Ind Eng Chem Res. 1995;34:78–82.

    Article  CAS  Google Scholar 

  122. Lu L, Hayakawa T, Ueda T, Hara M, Domen K, Maruya K. Chem Lett. 1998;1:65–6.

    Article  Google Scholar 

  123. Maruya K, Takasawa A, Aikawa M, Haraoka T, Omen K. J Chem Soc Faraday Trans. 1994;90:911–7.

    Article  CAS  Google Scholar 

  124. Zhu Z, He D. Fuel. 2008;87:2229–35.

    Article  CAS  Google Scholar 

  125. Trovarelli A. J Inorg Chem. 1999;20:263–84.

    CAS  Google Scholar 

  126. Sun C, Li H, Chen L. J Phys Chem Solids. 2007;68:1785–90.

    Article  CAS  Google Scholar 

  127. Sun C, Sun J, Xiao G, Zhang H, Qiu X, Li H, Chen L. J Phys Chem B. 2006;110:13445–52.

    Article  CAS  Google Scholar 

  128. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Pure Appl Chem. 1985;57:603–19.

    Article  CAS  Google Scholar 

  129. Nguyen C, Do DD. Langmuir. 1999;15:3608–15.

    Article  CAS  Google Scholar 

  130. Donohue MD, Aranovich GL. J Colloids Interf Sci. 1998;205:121–30.

    Article  CAS  Google Scholar 

  131. Leofanti G, Padovan M, Tozzola G, Venturelli B. Catal Today. 1998;41:207–19.

    Article  CAS  Google Scholar 

  132. Burgess CGV, Everett DH, Nuttall S. Pure Appl Chem. 1989;61(11):1845–52.

    Article  CAS  Google Scholar 

  133. Yuan Z, Idakiev V, Vantomme A, Tabakova T, Ren T, Su BL. Catal Today. 2008;131:203–10.

    Article  CAS  Google Scholar 

  134. Bonnetot B, Rakic V, Yuzhakova T, Guimon C, Auroux A. Chem Mater. 2008;20:1585–96.

    Article  CAS  Google Scholar 

  135. Aguila G, Guerrero S, Gracia F, Araya P. Appl Catal A. 2006;305:219–32.

    Article  CAS  Google Scholar 

  136. Pérez-Hernández R, Aguilar F, Gómez-Cortés A, Díaz G. Catal Today. 2005;107:175–80.

    Article  CAS  Google Scholar 

  137. Zawadzki M. J Alloys Compd. 2008;454:347–51.

    Article  CAS  Google Scholar 

  138. Tartaj P, Bomatí-Miguel O, Rebolledo AF, Valdes-Solis T. J Mater Chem. 2007;17:1958–63.

    Article  CAS  Google Scholar 

  139. Bumajdad A, Zaki MI, Eastoe J, Pasupulety L. Langmuir. 2004;20:11223–33.

    Article  CAS  Google Scholar 

  140. Inoue M, Sato K, Nakamura T, Inui T. Catal Lett. 2000;65:79–83.

    Article  CAS  Google Scholar 

  141. Stagg-Williams SM, Noronha FB, Fendley G, Resasco DE. J Catal. 2000;194:240–9.

    Article  CAS  Google Scholar 

  142. Wang ZL, Feng X. J Phys Chem B. 2003;107:13563–6.

    Article  CAS  Google Scholar 

  143. Giamello E. Catal Today. 1998;41:239–49.

    Article  CAS  Google Scholar 

  144. Abi-aad E, Bechara R, Grimblot J, Aboukais A. Chem Mater. 1993;5:793–7.

    Article  CAS  Google Scholar 

  145. Adamski A, Djéga-Mariadassou G, Sojka Z. Catal Today. 2007;119:120–4.

    Article  CAS  Google Scholar 

  146. Wang JB, Tai YL, Dow WP, Huang T-J. Appl Catal A. 2001;218:69–79.

    Article  CAS  Google Scholar 

  147. Appel LG, Eon JG, Schmal M. Physica Status Solidi. 1997;163:107–20.

    Article  CAS  Google Scholar 

  148. Voorhoeve RJH, Johnson DW, Remeika JP, Gallagher PK. Science. 1977;195:827–33.

    Article  CAS  Google Scholar 

  149. Vaz T, Salker AV. Mater Sci Eng B. 2007;133:81–4.

    Article  CAS  Google Scholar 

  150. Tascón JMD, González-Tejuca L. Z Phys Chem-Wiesbaden. 1980;121:63–78.

    Article  Google Scholar 

  151. Tascón JMD, González-Tejuca L. Z Phys Chem-Wiesbaden. 1980;121:79–93.

    Article  Google Scholar 

  152. Royer S, Duprez D, Kaliaguine S. Catal Today. 2006;112:99–102.

    Article  CAS  Google Scholar 

  153. Galasso FS. Perovskites and high TC superconductors. 1st ed. Chap. 1. Amsterdam: Gordon and Breach Sc. Publ.; 1990.

    Google Scholar 

  154. Nitadori T, Muramatsu M, Misono M. The valence control and catalytic properties of La2−xSrxNiO4. Bull Chem Soc Jpn. 1988;61:3831–7.

    Article  CAS  Google Scholar 

  155. Ferri D, Forni L. Methane combustion on some perovskite-like mixed oxides. Appl Catal B. 1998;16(2):119–26.

    Article  CAS  Google Scholar 

  156. Spinicci R, Tofanari A, Faticanti M, et al. Hexane total oxidation on LaMO3 (M = Mn, Co, Fe) perovskite-type oxides. J Mol Catal A Chem. 2001;176:247–52.

    Article  CAS  Google Scholar 

  157. Quinelato AL, Longo ER, Leite MI, et al. Synthesis and sintering of ZrO2CeO2 powder by use of polymeric precursor based on Pechini process. J Mater Sci. 2001;36:3825–30.

    Article  CAS  Google Scholar 

  158. Popa M, Kakihana M. Synthesis of lanthanum cobaltite (LaCoO3) by the polymerizable complex route. Solid State Ion. 2002;151(1–4):251–7.

    Article  CAS  Google Scholar 

  159. Villoria JA, Alvarez-Galvan MC, Navarro RM, et al. Zirconia-supported LaCoO3 catalysts for hydrogen production by oxidative reforming of diesel: optimization of preparation conditions. Catal Today. 2008;138(3–4):135–40.

    Article  CAS  Google Scholar 

  160. Machado BF, Serp P. Catal Sci Technol. 2012;2:54–75.

    Article  CAS  Google Scholar 

  161. Geim AK, Novoselov KS. Nat Mater. 2007;6:183–91.

    Article  CAS  Google Scholar 

  162. Chen D, Tang L, Li J. Chem Soc Rev. 2010;313:3157–80.

    Article  CAS  Google Scholar 

  163. Brownson DAC, Kampouris DK, Banks CE. J Power Sources. 2011;1136:4873–85.

    Article  CAS  Google Scholar 

  164. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science. 2004;306:666–9.

    Article  CAS  Google Scholar 

  165. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Prog Mater Sci. 2011;56:1178–271.

    Article  CAS  Google Scholar 

  166. Moussa SO, Panchakarla LS, Ho MQ, El-Shall MS. ACS Catal. 2013;4:535–45.

    Article  CAS  Google Scholar 

  167. Hofmann U, Frenzel A. Kolloid-Zeitschrift and Zeitschrift fur Polymere. 1934;68:99–151.

    Google Scholar 

  168. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Carbon. 2007;45:1558–65.

    Article  CAS  Google Scholar 

  169. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Nature. 2005;438:197–200.

    Article  CAS  Google Scholar 

  170. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385.

    Article  CAS  Google Scholar 

  171. Ubbelohde AR, Lewis LA. Graphite and its crystal compounds. London: Oxford University Press; 1960.

    Google Scholar 

  172. Brodie BC. Annales de Chime et de Physique. 1860;513:466–72.

    Google Scholar 

  173. Staudenmaier L. Chemische Berichte. 1898;31:981–99.

    Google Scholar 

  174. Hummers WS, Offeman RE. J Am Chem Soc. 1958;80:939.

    Article  Google Scholar 

  175. Hummers WS, Offeman RE. J Am Chem Soc. 1958;6:1339.

    Article  Google Scholar 

  176. Salavagione HJ, Martínez G, Ellis G. Macromol Rapid Commun. 2011;32:1771–89.

    Article  CAS  Google Scholar 

  177. Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science. 2008;319:1229.

    Article  CAS  Google Scholar 

  178. Saner B, Okyay F, Yürüm Y. Fuel. 2010;89:1903–10.

    Article  CAS  Google Scholar 

  179. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA. J Phys Chem B. 2006;110:8535–9.

    Article  CAS  Google Scholar 

  180. Slonczewski JC, Weiss PR. Band structure of graphite. Phys Rev. 1958;109:272.

    Article  CAS  Google Scholar 

  181. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Alonso MH, Milius DL, Car R, Prud’homme RK, Aksay IA. Chem Mater. 2007;19:4396–404.

    Article  CAS  Google Scholar 

  182. Schniepp HC, Abdala AA, Liu J, Alonso MH, Milius DL, Car R, Prud’homme RK, Aksay IA. Chem Mater. 2007;19:4396–404.

    Google Scholar 

  183. Zhang YB, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438:201.

    Article  CAS  Google Scholar 

  184. Alanyalıoglu M, Segura JJ, Oró-Solè J, Casan-Pastor N. Carbon. 2012;50:92–152.

    Article  CAS  Google Scholar 

  185. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:1302.

    Article  CAS  Google Scholar 

  186. Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P. Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett. 2008;92:263–302.

    Google Scholar 

  187. Li Y, Tang L, Li J. Electrochem Commun. 2009;11:846–9.

    Article  CAS  Google Scholar 

  188. Ritter KA, Lyding JW. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater. 2009;8:235.

    Article  CAS  Google Scholar 

  189. Thompson TE, Falardeau ER, Hanlon LR. The electrical conductivity and optical reflectance of graphite–SbF5 compounds. Carbon. 1977;15:39.

    Article  CAS  Google Scholar 

  190. Fuzellier H, Melin J, Herold A. Conductibilité électrique des composés lamellaires graphite–SbF5 et graphite–SbCl5. Carbon. 1977;15:45.

    Article  CAS  Google Scholar 

  191. Shenderova OA, Zhirnov VV, Brenner DW. Carbon nanostructures. Crit Rev Solid State Mater Sci. 2002;27:227.

    Article  CAS  Google Scholar 

  192. Krishnan A, Dujardin E, Treacy MMJ, Hugdahl J, Lynum S, Ebbesen TW. Graphitic cones and the nucleation of curved carbon surfaces. Nature. 1997;388:451.

    Article  CAS  Google Scholar 

  193. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater. 2009;8:203.

    Article  CAS  Google Scholar 

  194. Choi SM, Seo MH, Kim HJ, Kim WB. Carbon. 2011;49:904–9.

    Article  CAS  Google Scholar 

  195. Sprinkle M, Siegel D, Yu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, et al. First direct observation of a nearly ideal graphene band structure. Phys Rev Lett. 2009;103:226–803.

    Article  CAS  Google Scholar 

  196. de Parga ALV, Calleja F, Borca BMCG, Passeggi J, Hinarejos JJ, Guinea F, et al. Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett. 2008;100:056807.

    Article  CAS  Google Scholar 

  197. Zhang X, Li K, Li H, Lu J, Qiangang F, Chu Y. Graphene nanosheets synthesis via chemical reduction of grapheneoxide using sodium acetate trihydrate solution. Synt Met. 2013;193:132–8.

    Article  CAS  Google Scholar 

  198. Park J, Mitchel WC, Grazulis L, Smith HE, Eyink KG, Boeckl JJ, Tomich DH, Pacley SD, Hoelscher JE. Adv Mater. 2010;2:4130–5.

    Google Scholar 

  199. Park J, Mitchel WC, Grazulis L, Smith HE, Eyink KG, Boeckl JJ, Tomich DH, Pacley SD, Hoelscher JE. Adv Mater. 2010;2:4140–5.

    Article  CAS  Google Scholar 

  200. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3:101.

    Article  CAS  Google Scholar 

  201. He H, Riedl T, Lerf A, Klinowski J. J Phys Chem. 1996;100:19954–8.

    Article  CAS  Google Scholar 

  202. Murray CB, Kagan CR, Bawendi MG. Ann Rev Mater Sci. 2000;30:545–610.

    Article  CAS  Google Scholar 

  203. Araujo GC, Lima S, Rangel MC, Parola V, Peña MA, Fierro JLG. Catal Today. 2005;107:906–12.

    Article  CAS  Google Scholar 

  204. Lee DW, Won JH, Shim KB. Mat Lett. 2003;57:3346–51.

    Article  CAS  Google Scholar 

  205. Gajbhiye NS, Bhattacharya UE, Darshane VS. Thermoc Acta. 1995;264:219–30.

    Article  CAS  Google Scholar 

  206. Ponce S, Peña MA, Fierro JLG. Appl Catal B. 2000;24:193–205.

    Article  CAS  Google Scholar 

  207. Sis LB, Wirtz GP. J Appl Phys. 1973;44:5553–9.

    Article  CAS  Google Scholar 

  208. Antolini E. Mater Chem Phys. 2003;78:563–73.

    Article  CAS  Google Scholar 

  209. Antolini E. Appl Catal B. 2013;88:1–24.

    Article  CAS  Google Scholar 

  210. Stankovic S, Dikin DA, Dommett GHB, Kohlhass KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Nature. 2006;442:282–6.

    Article  CAS  Google Scholar 

  211. Sun Y, Wu Q, Shi G. Energy Environ Sci. 2011;4:1113–32.

    Article  CAS  Google Scholar 

  212. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Small. 2011;7:1876–902.

    Article  CAS  Google Scholar 

  213. Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Science. 2006;312:1191–8.

    Article  CAS  Google Scholar 

  214. Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M. Nano Lett. 2008;8:2012–6.

    Article  CAS  Google Scholar 

  215. Choucair M, Thordarson P, Stride JA. Nat Nanotechnol. 2009;4:30–3.

    Article  CAS  Google Scholar 

  216. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J. Adv Funct Mater. 2008;18:1518–25.

    Article  CAS  Google Scholar 

  217. Zhang X, Li K, Li H, Lu J, Qiangang F, Chu Y. Synth Met. 2014;193:132–8.

    Article  CAS  Google Scholar 

  218. Wang G, Wang B, Park J, Wang Y, Sun B, Yao J. Carbon. 2009;47:3242–6.

    Article  CAS  Google Scholar 

  219. Lee SH, Seo SD, Jin YH, Shim HW, Kim DW. Electrochem Commun. 2010;12:1319–22.

    Google Scholar 

  220. Lerf A, He H, Riedl T, Forster M, Klinowski J. Solid State Ionics. 1997;101–103:857–62.

    Article  Google Scholar 

  221. Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez JD, Rojas-Cervantes ML, Martin-Aranda RM. Carbon. 1995;33:1585–92.

    Article  CAS  Google Scholar 

  222. Ramesha GK, Sampath S. J Phys Chem C. 2009;113:7985–9.

    Article  CAS  Google Scholar 

  223. Wang Z, Zhou X, Zhang J, Boey F, Zhang H. J Phys Chem C. 2009;19:9071–5.

    Google Scholar 

  224. Dilimon VS, Sampath S. Thin Solid Films. 2011;519:2323–7.

    Article  CAS  Google Scholar 

  225. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, et al. Room-temperature quantum Hall effect in graphene. Science. 2007;315:979.

    Article  CAS  Google Scholar 

  226. Sutter PW, Flege J, Sutter EA. Epitaxial graphene on ruthenium. Nat Mater. 2008;7:406.

    Article  CAS  Google Scholar 

  227. Wintterlin J, Bocquet M-L. Graphene on metal surfaces. Surf Sci. 2013;603:1841.

    Article  CAS  Google Scholar 

  228. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442:282.

    Article  CAS  Google Scholar 

  229. Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Lopez-Manchado MA. Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem. 2008;18:2221.

    Article  CAS  Google Scholar 

  230. Gilje S, Han S, Wang M, Wang KL, Kaner RB. A chemical route to graphene for device applications. Nano Lett. 2007;7:3394.

    Article  CAS  Google Scholar 

  231. Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007;7:3499.

    Article  CAS  Google Scholar 

  232. Hummers WOR. Preparation of graphite oxide. J Am Chem Soc. 1958;80:939.

    Article  Google Scholar 

  233. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir. 2008;24:10560.

    Article  CAS  Google Scholar 

  234. Negishi R, Hirano H, Ohno Y, Maehashi K, Matsumoto K, Kobayashi Y. Thin Solid Films. 2011;519:6447–52.

    Article  CAS  Google Scholar 

  235. Jiao L, Zhang L, Wang X, Diankov G, Dai H. Nature. 2009;458:877–80.

    Article  CAS  Google Scholar 

  236. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN. J Am Chem Soc. 2009;131:3611–20.

    Article  CAS  Google Scholar 

  237. Guo J, Ren L, Wang R, Zhang C, Yang Y, Liu T. Compos B Eng. 2011;42:290–5.

    Article  CAS  Google Scholar 

  238. Liao KA, Mittal KA, Bose S, Leighton C, Mkhoyan K, Macosko CW. ACS Nano. 2011;5:1253–8.

    Article  CAS  Google Scholar 

  239. Fan Z, Wang K, Wei T, Yan J, Song L, Shao B. Carbon. 2010;48:1686–9.

    Article  CAS  Google Scholar 

  240. Mei X, Ouyang J. Carbon. 2011;49:5389–97.

    Article  CAS  Google Scholar 

  241. Thakur S, Karak N. Carbon. 2012;50:5331–9.

    Article  CAS  Google Scholar 

  242. Zhu C, Guo S, Fang Y, Dong S. ACS Nano. 2010;4:2429–37.

    Article  CAS  Google Scholar 

  243. Shen J, Li T, Long Y, Shi M, Li N, Ye M. Carbon. 2012;50:2134–40.

    Article  CAS  Google Scholar 

  244. Zangmeister CD. Chem Mater. 2010;22:5625–9.

    Article  CAS  Google Scholar 

  245. Chen W, Yan L, Bangal PR. J Phys Chem C. 2010;113:19885–90.

    Article  CAS  Google Scholar 

  246. Wang G, Shen X, Wang B, Yao J, Park J. Carbon. 2013;47:1359–64.

    Article  CAS  Google Scholar 

  247. Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, David C, Ruoff RS. ACS Nano. 2010;2:1227–33.

    Article  CAS  Google Scholar 

  248. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Adv Mater. 2008;20:4490–3.

    Article  CAS  Google Scholar 

  249. Lian P, Zhu X, Xiang H, Li Z, Yang W, Wang H. Electrochim Acta. 2010;56:834–40.

    Article  CAS  Google Scholar 

  250. Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Talanta. 2010;81:754–9.

    Article  CAS  Google Scholar 

  251. Le LT, Ervin MH, Qiu HW, Fuchs BE, Lee WY. Electrochem Commun. 2011;13:355–8.

    Article  CAS  Google Scholar 

  252. Xue X, Ma C, Cui C, Xing L. Solid State Sci. 2011;13:1526–30.

    Article  CAS  Google Scholar 

  253. Liu C, Alwarappan S, Chen Z, Kong X, Li C. Biosens Bioelectron. 2010;25:1829–33.

    Article  CAS  Google Scholar 

  254. Lemme MC, Echtermeyer TJ, Baus M, Szafranek BN, Bolten J, Schmidt M, Wahlbrink T, Kurz H. Solid-State Electron. 2008;52:514–8.

    Article  CAS  Google Scholar 

  255. Zhang H, Zheng W, Yan Q, Yang Y, Wang J, Lu Z, Ji G, Yu Z. Polymer. 2010;51:1191–6.

    Article  CAS  Google Scholar 

  256. Grande L, Chundi VT, Wei D, Bower C, Andrew P, Ryhänen T. Particuology. 2012;10:1–8.

    Article  CAS  Google Scholar 

  257. Pantelic RS, Meyer JC, Kaiser U, Baumeister WF, Plitzko JM. J Struct Biol. 2010;170:152–6.

    Article  CAS  Google Scholar 

  258. Chen W, Yan L, Bangal PR. J Phys Chem C. 2010;114:19885–90.

    Article  CAS  Google Scholar 

  259. Wang G, Shen X, Wang B, Yao J, Park J. Carbon. 2009;47:1359–64.

    Article  CAS  Google Scholar 

  260. Salas EC, Sun ZZ, Lüttge A, Tour JM. ACS Nano. 2010;4:4852–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmal, M., Moya, S. (2016). Nanostructured Catalysts. In: Heterogeneous Catalysis and its Industrial Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-09250-8_13

Download citation

Publish with us

Policies and ethics