Advertisement

Nanostructured Catalysts

  • Martin Schmal
  • Silvia Moya
Chapter

Abstract

Nanostructured systems are of great interest from points of view of basic science and technological applications. Within the topic of catalysis, should be highlighted the properties associated with different morphologies, activities and selectivities, which are strongly affected by the shape and particle size; in the case of crystalline metallic phases are oriented crystal faces. The reactions that are influenced by these factors (morphological) are known as structure sensitive reactions.

Keywords

Grapheme Metals Nanostructure NCT Oxides 

References

  1. 1.
    Aiken III JD, Finke RG. J Mol Catal A. 1999;135:1–44.CrossRefGoogle Scholar
  2. 2.
    Burda C, Chen X, Narayanan R, El-Sayed MA. Chem Rev. 2005;105:1025–102.CrossRefGoogle Scholar
  3. 3.
    Narayanan R, El-Sayed MA. Nano Lett. 2004;4:1343–8.CrossRefGoogle Scholar
  4. 4.
    Wikipedia: the free encyclopedia.htm. file:///D:/Carbon%20nanotube%20Google Scholar
  5. 5.
    Antolini E. Appl Catal Environ. 2012;123–124:52–68.CrossRefGoogle Scholar
  6. 6.
    Roucoux A, Schulz J, Patin H. Chem Rev. 2002;102:3757–78.CrossRefGoogle Scholar
  7. 7.
    Moujlijn JA, van Leeuwen PWN, van Santen RA. Catalysis. In: Geus et al, editors. Studies in surface science and catalysis, Chap. 9; 1995, vol. 79, p. 339.Google Scholar
  8. 8.
    Wang X, Zhuang J, Peng Q, Li Y. Nature. 2005;437:121–4.CrossRefGoogle Scholar
  9. 9.
    Cushing BL, Kolesnichenko VL, O’Connor CJ. Chem Rev. 2004;104:3893–946.CrossRefGoogle Scholar
  10. 10.
    Weare WW, Reed SM, Warner MG, Hutchinson JE. Improved synthesis of small phosphine-stabilized gold nanoparticles. J Amer Chem Soc. 2000;122:12890–1.CrossRefGoogle Scholar
  11. 11.
    Yao H, Momozawa O, Hamatami T, Kimura K. Stepwise size selective extraction of carboxylate-modified gold nanoparticles from an aqueous suspension into toluene with trioctylammonium cations. Chem Mater. 2001;13:4692–7.CrossRefGoogle Scholar
  12. 12.
    Okitsu K, Mizukoshi Y, Bandow H, Maeda Y, Yamamoto T, Nagata Y. Formation of the noble metal nanoparticles by ultrasonic irradiation. Ultrason Sonochem. 1996;3:S249–51.CrossRefGoogle Scholar
  13. 13.
    Okitsu K, Bandow H, Maeda Y. Sonochemical preparation of ultrafine palladium nanoparticles. Chem Mater. 1996;8:315–7.CrossRefGoogle Scholar
  14. 14.
    Leff DV, Brandt L, Heath JR. Synthesis and characterization of hydrophobic organically soluble gold nanocrystals functionalized with primary amines. Langmuir. 1996;12:4723–30.CrossRefGoogle Scholar
  15. 15.
    Teranishi T, Miyake M. Size control of palladium nanoparticles and their crystal structures. Chem Mater. 1998;10:594–600.CrossRefGoogle Scholar
  16. 16.
    El-Sayed MA. Acc Chem Res. 2001;34:257–64.CrossRefGoogle Scholar
  17. 17.
    Toniolo FS, Moya S, Schmal M. Adv Chem Lett. 2013;1:1–8.CrossRefGoogle Scholar
  18. 18.
    Moya SF, Martins RL, Ota A, Kunkes EL, Behrens M, Schmal M. Appl Catal Gen. 2012;411–412:105–13.CrossRefGoogle Scholar
  19. 19.
    Ota A, Kunkes EL, Kröhnert J, Schmal M, Behrens M. Appl Catal Gen. 2013;452:203–13.CrossRefGoogle Scholar
  20. 20.
    Suslick KS, Hyeon T, Fang M, Cichowlas AA. Mater Sci Eng A. 1995;204:186–92.CrossRefGoogle Scholar
  21. 21.
    Narayanan R, El-Sayed MA. J Phys Chem B. 2005;109:12663–76.CrossRefGoogle Scholar
  22. 22.
    Lee MB, Yang QY, Ceyer ST. J Chem Phys. 1987;87:2724–41.CrossRefGoogle Scholar
  23. 23.
    Valden M, Pere J, Xiang N, Pessa M. Chem Phys Lett. 1996;257:289–96.CrossRefGoogle Scholar
  24. 24.
    Beebe Jr TP, Goodman DW, Kay BD, Yates JT. Kinetics of the activated dissociative adsorption of methane on the low index planes of Ni single crystal surfaces. J Am Chem Soc. 1987;87:2305–15.Google Scholar
  25. 25.
    Choudhary TV, Goodman DW. Top Catal. 2002;20:35–42.CrossRefGoogle Scholar
  26. 26.
    Goodman DW. J Phys Chem. 1996;100:13090–102.CrossRefGoogle Scholar
  27. 27.
    In YZ, Sun J, Yi J, Lin JD, Chen HB, Liao DW. J Mol Struct Theochem. 2002;587:63–71.CrossRefGoogle Scholar
  28. 28.
    Ciobica IM, Van Santen RA. J Phys Chem B. 2002;106:6200–5.CrossRefGoogle Scholar
  29. 29.
    Moya SF. tese de doutorado. COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ; 2008.Google Scholar
  30. 30.
    Teranishi T, Miyake M. Chem Mat. 1999;10:594–600.CrossRefGoogle Scholar
  31. 31.
    Thompson LH, Doraiswamy LK. Ind Eng Chem Res. 1999;38:1215–49.CrossRefGoogle Scholar
  32. 32.
    Oh H-S, Yang KJ, Costello CK, Wang YM, Bare SR, Hung HH, Kung MC. J Catal. 2002;210:375–86.CrossRefGoogle Scholar
  33. 33.
    Lee S-J, Gavriilidis A. J Catal. 2002;206:305–13.CrossRefGoogle Scholar
  34. 34.
    Haruta M. J New Mater Electrochem Syst. 2004;7:163–72.Google Scholar
  35. 35.
    Wolf A, Schüth F. Appl Catal A. 2002;226:1–13.CrossRefGoogle Scholar
  36. 36.
    Ribeiro NFP, Mendes FMT, Perez CAC, Souza MMVM, Schmal M. Appl Catal A. 2009;347:62–71.CrossRefGoogle Scholar
  37. 37.
    Turkevich J, Stevenson PC, Killier J. Disc Faraday Soc. 1951;11:55.CrossRefGoogle Scholar
  38. 38.
    Turkevich J. Gold Bull. 1985;18:86.CrossRefGoogle Scholar
  39. 39.
    Duff DG, Baiker A, Edwards PP. Langmuir. 1993;9:2301–9.CrossRefGoogle Scholar
  40. 40.
    Duff DG, Baiker A, Gameson I, Edwards PP. Langmuir. 1993;9:2310–7.CrossRefGoogle Scholar
  41. 41.
    Fierro JLG, Peña MA. Chem Rev. 2001;101:1981–2018.CrossRefGoogle Scholar
  42. 42.
    Tejuca LG, Fierro JLG, Tascon JMD. Adv Catal. 1989;36:237–328.Google Scholar
  43. 43.
    Lin J, Yu M, Lin C, Liu X. J Phys Chem C. 2007;111:5835.CrossRefGoogle Scholar
  44. 44.
    Magalhães RNSH, Toniolo FS, da Silva VT, Schmal M. Appl Catal A Gen. 2010;388:216–24.CrossRefGoogle Scholar
  45. 45.
    Ko E-Y, Park ED, Seo KW, Lee HC, Lee D, Kim S. Catal Today. 2006;116:377.CrossRefGoogle Scholar
  46. 46.
    Białobok B, TrawczynSki J, MisTa W, Zawadzki M. Appl Catal B. 2007;72:395.CrossRefGoogle Scholar
  47. 47.
    Oliva C, Cappelli S, Kryukov A, Chiarello GL, Vishniakov AV, Forni L. J Mol Catal A Chem. 2006;255:36.CrossRefGoogle Scholar
  48. 48.
    Wen Y, Zhang C, He H, Yu Y, Teraoka Y. Catal Today. 2007;126:400–5.CrossRefGoogle Scholar
  49. 49.
    Forni L, Oliva C, Vatti FP, Kandala MA, Ezerets AM, Vishniakov AV. Appl Catal B. 1996;7:269–84.CrossRefGoogle Scholar
  50. 50.
    French SA, Catlow CRA, Oldman RJ, Rogers SC, Axon SA. Chem Commun. 2002;22:2706–7.CrossRefGoogle Scholar
  51. 51.
    Viswanathan B, George S. React Kinet Catal Lett. 1985;27:321–4.CrossRefGoogle Scholar
  52. 52.
    Shannon RD. Acta Crystallogr A. 1976;32:751.CrossRefGoogle Scholar
  53. 53.
    Hadjievl VG, Ilievl MN, Vergilovs IV. J Phys C Solid State Phys. 1988;21:L199–201.CrossRefGoogle Scholar
  54. 54.
    Wang ZL, Petroski JM, Green TC, El-Sayed MA. J Phys Chem B. 1999;102:6135–51.Google Scholar
  55. 55.
    Okitsu K, Yue A, Tanabe S, Matsumoto H. Chem Mater. 2000;12:3006–11.CrossRefGoogle Scholar
  56. 56.
    Miyazaki A, Balint I, Nakano Y. J Nanop Res. 2003;5:69–80.CrossRefGoogle Scholar
  57. 57.
    Duteil A, Schmid G, Meyer-Zaika W. J Chem Soc Chem Commun. 1995;31–32.Google Scholar
  58. 58.
    Kumar RV, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides form metal acetates. Chem Mater. 2000;12:2301–5.CrossRefGoogle Scholar
  59. 59.
    Liang J, Jiang X, Liu G, Deng Z, Zhuang J, Li F, Li Y. Characterization and synthesis of pure ZrO2 nanopowders via sonochemical methods. Mater Res Bull. 2003;38:161–8.CrossRefGoogle Scholar
  60. 60.
    Srivastava DN, Perkas N, Zaban A, Gedanken A. Sonochemistry as a tool for preparation of porous metal oxides. Pure Appl Chem. 2002;74:1509–17.CrossRefGoogle Scholar
  61. 61.
    Mizukoshi Y, Takagi E, Okuno H, Oshima R, Maeda Y, Nagata Y. Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultrason Sonochem. 2001;8:1–6.CrossRefGoogle Scholar
  62. 62.
    Hyeon T, Fang M, Suslick KS. Nanostructure molibdenum carbide: sonochemical synthesis and catalytic properties. J Amer Chem Soc. 1996;118:5492–3.CrossRefGoogle Scholar
  63. 63.
    Liu BS, Au CT. Appl Catal A. 2003;244:181–95.CrossRefGoogle Scholar
  64. 64.
    Zhu J, Aruna ST, Koltypin Y, Gedanken A. A novel method for the preparation of lead selenide: pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chem Mater. 2000;12:143–7.CrossRefGoogle Scholar
  65. 65.
    Qiu L, Wei Y, Pol VG, Gedanken A. Synthesis of a-MoTe2 nanorods via annealing Te-seeded amorphous MoTe2 nanoparticles. Inorg Chem. 2004;43:6061–6.CrossRefGoogle Scholar
  66. 66.
    Thompson LH, Doraiswamy LK. Sonochemistry : science and engineering. Ind Eng Chem Res. 1999;38:1215–49.CrossRefGoogle Scholar
  67. 67.
    Li H, Wang R, Hong Q, Chen L, Zhong Z, Koltypin Y, Calderon-Moreno J, Gedanken A. Ultrasound assisted polyol method for the preparation of SBA-15 supported ruthenium nanoparticles and the study of their catalytic activity on the partial oxidation of methane. Langmuir. 2004;20:8352–6.CrossRefGoogle Scholar
  68. 68.
    Dhas NA, Ekhtiarzadeh A, Suslick KS. Sonochemical preparation of supported hydrodesulfurization catalysts. J Amer Chem Soc. 2001;123:8310–6.CrossRefGoogle Scholar
  69. 69.
    Yang QY, Johnson AD, Maynard KJ, Ceyer ST. Synthesis of benzene from methane over a Ni(111) catalyst. J Am Chem Soc. 1989;111:8748–9.CrossRefGoogle Scholar
  70. 70.
    Narayanan R, El-Sayed MA. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solutions. Nano Lett. 2004;4:1343–8.CrossRefGoogle Scholar
  71. 71.
    Narayanan R, El-Sayed MA. Changing catalytic activity during colloidal platinum nanocrystals due to the shape changes: electron transfer reactions. J Amer Chem Soc. 2004;126:7194–5.CrossRefGoogle Scholar
  72. 72.
    Orlovskaya N, Steinmetz D, Yarmolenko S, PAI D, Sankar J, Goodenough J. Phys Rev B. 2005;72:220.CrossRefGoogle Scholar
  73. 73.
    Martins RL, Schmal M. J Braz Chem Soc. 2013;25(12):2399–408.Google Scholar
  74. 74.
    Martins RL, Baldanza MAS, Souza MMVM, Schmal M. Appl Catal A Gen. 2007;318:207.CrossRefGoogle Scholar
  75. 75.
    Moya SF, Martins RL, Schmal M. Appl Catal A Gen. 2011;396:159.CrossRefGoogle Scholar
  76. 76.
    Martins RL, Baldanza MAS, Alberton AL, Vasconcelos SM, Schmal M. Appl Catal B Environ. 2011;103:326.CrossRefGoogle Scholar
  77. 77.
    Martins RL, Schmal M. Appl Catal A Gen. 2006;308:133.CrossRefGoogle Scholar
  78. 78.
    Muradov NZ. Energy Fuels. 1998;12:41.CrossRefGoogle Scholar
  79. 79.
    Poirier MG, Sapundzhiev C. Int J Hydrogen Energy. 1997;22:429.CrossRefGoogle Scholar
  80. 80.
    Choudhary TV, Goodman DW. Catal Lett. 1999;59:93.CrossRefGoogle Scholar
  81. 81.
    Aiello R, Fiscus JE, zur Loye H-C, Amiridis MD. Appl Catal A. 2000;192:227.CrossRefGoogle Scholar
  82. 82.
    Alberton AL, Souza MMVM, Schmal M. Appl Catal B Environ. 2011;103(3–4):326.Google Scholar
  83. 83.
    Li Y, Zhang B, Xie X, Liu J, Xu Y, Shen W. J Catal. 2006;238:412.CrossRefGoogle Scholar
  84. 84.
    Ni X, Zhao Q, Zhou F, Zheng H, Cheng J, Li B. J Crystal Growth. 2006;289:299.CrossRefGoogle Scholar
  85. 85.
    Zhu LP, Liao GH, Yang Y, Xiao HM, Wang JF, Fu SY. Nanoscale Res Lett. 2009;4:550.CrossRefGoogle Scholar
  86. 86.
    Ni X, Zhang Y, Tian D, Zheng H, Wang X. J Crystal Growth. 2007;306:418.CrossRefGoogle Scholar
  87. 87.
    Gui Z, Liv J, Wang Z, Song L, Hu Y, Fan W, Chen D. J Phys Chem B. 2005;109:119.CrossRefGoogle Scholar
  88. 88.
    Winslow P, Bell AT. J Catal. 1985;94:385.CrossRefGoogle Scholar
  89. 89.
    Duncan TM, Winslow P, Bell AT. J Catal. 1985;93:1.CrossRefGoogle Scholar
  90. 90.
    Chorkendorff I, Alstrup I, Ullmann S. Surf Sci. 1990;227:291.CrossRefGoogle Scholar
  91. 91.
    Egeberg RC, Ullmann S, Astrup I, Mullins CB, Chorkendorff I. Surf Sci. 2002;497:183.CrossRefGoogle Scholar
  92. 92.
    Swang O, Faegri Jr K, Gropen O, Wahlgren U, Siegbahn P. Chem Phys. 1991;156:379.CrossRefGoogle Scholar
  93. 93.
    Xing B, Pang X-Y, Wang G-C, Shang Z-F. J Mol Catal A. 2010;315:187.CrossRefGoogle Scholar
  94. 94.
    Ribeiro NFP, Neto RCR, Moya SF, Souza MMVM, Schmal M. Int J Hydrogen Energy. 2010;35(21):11725–32.CrossRefGoogle Scholar
  95. 95.
    Jeevanandam P, Koltypin Y, Gedanken A. Mater Sci Eng. 2001;90:125–32.CrossRefGoogle Scholar
  96. 96.
    Cui H, Zayat M, Levy D. J Non-Cryst Solids. 2005;351:2102–6.CrossRefGoogle Scholar
  97. 97.
    Pompeo F, Gazzoli D, Nichio NN. Int J Hydrogen Energy. 2009;34:2260–8.CrossRefGoogle Scholar
  98. 98.
    Han YS, Li JB, Ning XS, Yang XZ, Chi B. Mater Sci Eng A. 2004;369:241–4.CrossRefGoogle Scholar
  99. 99.
    Guo J, Lou H, Zheng X. Carbon. 2007;45:1313–21.Google Scholar
  100. 100.
    Souza NA, Silva EB, Jardim PM, Sasaki JM. Mater Lett. 2007;61:4743–6.CrossRefGoogle Scholar
  101. 101.
    Avgouropoulos G, Ioannides T, Matralis H. Appl Catal B Environ. 2005;56:87–93.CrossRefGoogle Scholar
  102. 102.
    Patil KC, Aruna ST, Ekambaram S. Combustion synthesis. Curr Opin Solid State Mater. 1997;2:158–65.CrossRefGoogle Scholar
  103. 103.
    Patil KC, Aruna ST, Mimani T. Solid State Mater. 2002;6:505–12.Google Scholar
  104. 104.
    Varma A, Rogachev AS, Mukasyan AS, Hwang S. Adv Chem Eng. 1998;24:79–226.CrossRefGoogle Scholar
  105. 105.
    Kingsley JJ, Suresh K, Patil KC. J Mater Sci. 1990;25:1305–12.CrossRefGoogle Scholar
  106. 106.
    Minami T. J Alloy Compd. 2001;315:123–8.CrossRefGoogle Scholar
  107. 107.
    Alinejad B, Sarpoolaky H, Beitollahi A, Saberi A, Afshar S. Mater Res Bull. 2008;43:1188–94.CrossRefGoogle Scholar
  108. 108.
    Chen Y, Zhou W, Shao Z, Xu N. Catal Commun. 2008;9:1318–25.Google Scholar
  109. 109.
    Ringuedé A, Labrincha JA, Frade JR. Solid State Ion. 2001;131:549–57.CrossRefGoogle Scholar
  110. 110.
    Avgouropoulos G, Ioannides T. Appl Catal A. 2003;244:155–67.CrossRefGoogle Scholar
  111. 111.
    Areán CO, Mentruit MP, López AJL, Parra JB. Colloids Surf A. 2001;180:253–8.CrossRefGoogle Scholar
  112. 112.
    Sahli N, Roger AC, Kiennemann A, Libs S, Bettahar MM. Catal Today. 2006;113:187–93.CrossRefGoogle Scholar
  113. 113.
    Han YS, Li JB, Ning XS, Chi B. J Am Ceram Soc. 2004;87:1347–9.CrossRefGoogle Scholar
  114. 114.
    Hoffer BH, van Langeveld AD, Jannssens J-P, Bonné RLC, Martin C, Moulijn JA. J Catal. 2000;192:432–40.CrossRefGoogle Scholar
  115. 115.
    Neto CRR, Schmal M. Appl Catal A Gen. 2013;450:131–2.CrossRefGoogle Scholar
  116. 116.
    Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S. J Phys Chem B. 2000;104:11110–6.CrossRefGoogle Scholar
  117. 117.
    Khaodee W, Jongsomjit B, Assabumrungrat S, Praserthdam P, Goto S. Catal Commun. 2009;10:494–501.CrossRefGoogle Scholar
  118. 118.
    Reddy BM, Khan A. Catal Surv. 2005;9:155–71.CrossRefGoogle Scholar
  119. 119.
    Su C, Li J, He D, Cheng Z, Zhu Q. Appl Catal A. 2000;202:81–9.CrossRefGoogle Scholar
  120. 120.
    Postula WS, Feng Z, Philip CV, Akgerman A, Anthony RG. J Catal. 1994;135:126–31.CrossRefGoogle Scholar
  121. 121.
    Feng Z, Postula WS, Akgerman A, Anthony RG. Ind Eng Chem Res. 1995;34:78–82.CrossRefGoogle Scholar
  122. 122.
    Lu L, Hayakawa T, Ueda T, Hara M, Domen K, Maruya K. Chem Lett. 1998;1:65–6.CrossRefGoogle Scholar
  123. 123.
    Maruya K, Takasawa A, Aikawa M, Haraoka T, Omen K. J Chem Soc Faraday Trans. 1994;90:911–7.CrossRefGoogle Scholar
  124. 124.
    Zhu Z, He D. Fuel. 2008;87:2229–35.CrossRefGoogle Scholar
  125. 125.
    Trovarelli A. J Inorg Chem. 1999;20:263–84.Google Scholar
  126. 126.
    Sun C, Li H, Chen L. J Phys Chem Solids. 2007;68:1785–90.CrossRefGoogle Scholar
  127. 127.
    Sun C, Sun J, Xiao G, Zhang H, Qiu X, Li H, Chen L. J Phys Chem B. 2006;110:13445–52.CrossRefGoogle Scholar
  128. 128.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Pure Appl Chem. 1985;57:603–19.CrossRefGoogle Scholar
  129. 129.
    Nguyen C, Do DD. Langmuir. 1999;15:3608–15.CrossRefGoogle Scholar
  130. 130.
    Donohue MD, Aranovich GL. J Colloids Interf Sci. 1998;205:121–30.CrossRefGoogle Scholar
  131. 131.
    Leofanti G, Padovan M, Tozzola G, Venturelli B. Catal Today. 1998;41:207–19.CrossRefGoogle Scholar
  132. 132.
    Burgess CGV, Everett DH, Nuttall S. Pure Appl Chem. 1989;61(11):1845–52.CrossRefGoogle Scholar
  133. 133.
    Yuan Z, Idakiev V, Vantomme A, Tabakova T, Ren T, Su BL. Catal Today. 2008;131:203–10.CrossRefGoogle Scholar
  134. 134.
    Bonnetot B, Rakic V, Yuzhakova T, Guimon C, Auroux A. Chem Mater. 2008;20:1585–96.CrossRefGoogle Scholar
  135. 135.
    Aguila G, Guerrero S, Gracia F, Araya P. Appl Catal A. 2006;305:219–32.CrossRefGoogle Scholar
  136. 136.
    Pérez-Hernández R, Aguilar F, Gómez-Cortés A, Díaz G. Catal Today. 2005;107:175–80.CrossRefGoogle Scholar
  137. 137.
    Zawadzki M. J Alloys Compd. 2008;454:347–51.CrossRefGoogle Scholar
  138. 138.
    Tartaj P, Bomatí-Miguel O, Rebolledo AF, Valdes-Solis T. J Mater Chem. 2007;17:1958–63.CrossRefGoogle Scholar
  139. 139.
    Bumajdad A, Zaki MI, Eastoe J, Pasupulety L. Langmuir. 2004;20:11223–33.CrossRefGoogle Scholar
  140. 140.
    Inoue M, Sato K, Nakamura T, Inui T. Catal Lett. 2000;65:79–83.CrossRefGoogle Scholar
  141. 141.
    Stagg-Williams SM, Noronha FB, Fendley G, Resasco DE. J Catal. 2000;194:240–9.CrossRefGoogle Scholar
  142. 142.
    Wang ZL, Feng X. J Phys Chem B. 2003;107:13563–6.CrossRefGoogle Scholar
  143. 143.
    Giamello E. Catal Today. 1998;41:239–49.CrossRefGoogle Scholar
  144. 144.
    Abi-aad E, Bechara R, Grimblot J, Aboukais A. Chem Mater. 1993;5:793–7.CrossRefGoogle Scholar
  145. 145.
    Adamski A, Djéga-Mariadassou G, Sojka Z. Catal Today. 2007;119:120–4.CrossRefGoogle Scholar
  146. 146.
    Wang JB, Tai YL, Dow WP, Huang T-J. Appl Catal A. 2001;218:69–79.CrossRefGoogle Scholar
  147. 147.
    Appel LG, Eon JG, Schmal M. Physica Status Solidi. 1997;163:107–20.CrossRefGoogle Scholar
  148. 148.
    Voorhoeve RJH, Johnson DW, Remeika JP, Gallagher PK. Science. 1977;195:827–33.CrossRefGoogle Scholar
  149. 149.
    Vaz T, Salker AV. Mater Sci Eng B. 2007;133:81–4.CrossRefGoogle Scholar
  150. 150.
    Tascón JMD, González-Tejuca L. Z Phys Chem-Wiesbaden. 1980;121:63–78.CrossRefGoogle Scholar
  151. 151.
    Tascón JMD, González-Tejuca L. Z Phys Chem-Wiesbaden. 1980;121:79–93.CrossRefGoogle Scholar
  152. 152.
    Royer S, Duprez D, Kaliaguine S. Catal Today. 2006;112:99–102.CrossRefGoogle Scholar
  153. 153.
    Galasso FS. Perovskites and high TC superconductors. 1st ed. Chap. 1. Amsterdam: Gordon and Breach Sc. Publ.; 1990.Google Scholar
  154. 154.
    Nitadori T, Muramatsu M, Misono M. The valence control and catalytic properties of La2−xSrxNiO4. Bull Chem Soc Jpn. 1988;61:3831–7.CrossRefGoogle Scholar
  155. 155.
    Ferri D, Forni L. Methane combustion on some perovskite-like mixed oxides. Appl Catal B. 1998;16(2):119–26.CrossRefGoogle Scholar
  156. 156.
    Spinicci R, Tofanari A, Faticanti M, et al. Hexane total oxidation on LaMO3 (M = Mn, Co, Fe) perovskite-type oxides. J Mol Catal A Chem. 2001;176:247–52.CrossRefGoogle Scholar
  157. 157.
    Quinelato AL, Longo ER, Leite MI, et al. Synthesis and sintering of ZrO2CeO2 powder by use of polymeric precursor based on Pechini process. J Mater Sci. 2001;36:3825–30.CrossRefGoogle Scholar
  158. 158.
    Popa M, Kakihana M. Synthesis of lanthanum cobaltite (LaCoO3) by the polymerizable complex route. Solid State Ion. 2002;151(1–4):251–7.CrossRefGoogle Scholar
  159. 159.
    Villoria JA, Alvarez-Galvan MC, Navarro RM, et al. Zirconia-supported LaCoO3 catalysts for hydrogen production by oxidative reforming of diesel: optimization of preparation conditions. Catal Today. 2008;138(3–4):135–40.CrossRefGoogle Scholar
  160. 160.
    Machado BF, Serp P. Catal Sci Technol. 2012;2:54–75.CrossRefGoogle Scholar
  161. 161.
    Geim AK, Novoselov KS. Nat Mater. 2007;6:183–91.CrossRefGoogle Scholar
  162. 162.
    Chen D, Tang L, Li J. Chem Soc Rev. 2010;313:3157–80.CrossRefGoogle Scholar
  163. 163.
    Brownson DAC, Kampouris DK, Banks CE. J Power Sources. 2011;1136:4873–85.CrossRefGoogle Scholar
  164. 164.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science. 2004;306:666–9.CrossRefGoogle Scholar
  165. 165.
    Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Prog Mater Sci. 2011;56:1178–271.CrossRefGoogle Scholar
  166. 166.
    Moussa SO, Panchakarla LS, Ho MQ, El-Shall MS. ACS Catal. 2013;4:535–45.CrossRefGoogle Scholar
  167. 167.
    Hofmann U, Frenzel A. Kolloid-Zeitschrift and Zeitschrift fur Polymere. 1934;68:99–151.Google Scholar
  168. 168.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Carbon. 2007;45:1558–65.CrossRefGoogle Scholar
  169. 169.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Nature. 2005;438:197–200.CrossRefGoogle Scholar
  170. 170.
    Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385.CrossRefGoogle Scholar
  171. 171.
    Ubbelohde AR, Lewis LA. Graphite and its crystal compounds. London: Oxford University Press; 1960.Google Scholar
  172. 172.
    Brodie BC. Annales de Chime et de Physique. 1860;513:466–72.Google Scholar
  173. 173.
    Staudenmaier L. Chemische Berichte. 1898;31:981–99.Google Scholar
  174. 174.
    Hummers WS, Offeman RE. J Am Chem Soc. 1958;80:939.CrossRefGoogle Scholar
  175. 175.
    Hummers WS, Offeman RE. J Am Chem Soc. 1958;6:1339.CrossRefGoogle Scholar
  176. 176.
    Salavagione HJ, Martínez G, Ellis G. Macromol Rapid Commun. 2011;32:1771–89.CrossRefGoogle Scholar
  177. 177.
    Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science. 2008;319:1229.CrossRefGoogle Scholar
  178. 178.
    Saner B, Okyay F, Yürüm Y. Fuel. 2010;89:1903–10.CrossRefGoogle Scholar
  179. 179.
    Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA. J Phys Chem B. 2006;110:8535–9.CrossRefGoogle Scholar
  180. 180.
    Slonczewski JC, Weiss PR. Band structure of graphite. Phys Rev. 1958;109:272.CrossRefGoogle Scholar
  181. 181.
    McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Alonso MH, Milius DL, Car R, Prud’homme RK, Aksay IA. Chem Mater. 2007;19:4396–404.CrossRefGoogle Scholar
  182. 181a.
    Schniepp HC, Abdala AA, Liu J, Alonso MH, Milius DL, Car R, Prud’homme RK, Aksay IA. Chem Mater. 2007;19:4396–404.Google Scholar
  183. 182.
    Zhang YB, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438:201.CrossRefGoogle Scholar
  184. 183.
    Alanyalıoglu M, Segura JJ, Oró-Solè J, Casan-Pastor N. Carbon. 2012;50:92–152.CrossRefGoogle Scholar
  185. 184.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:1302.CrossRefGoogle Scholar
  186. 185.
    Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P. Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett. 2008;92:263–302.Google Scholar
  187. 186.
    Li Y, Tang L, Li J. Electrochem Commun. 2009;11:846–9.CrossRefGoogle Scholar
  188. 187.
    Ritter KA, Lyding JW. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater. 2009;8:235.CrossRefGoogle Scholar
  189. 188.
    Thompson TE, Falardeau ER, Hanlon LR. The electrical conductivity and optical reflectance of graphite–SbF5 compounds. Carbon. 1977;15:39.CrossRefGoogle Scholar
  190. 189.
    Fuzellier H, Melin J, Herold A. Conductibilité électrique des composés lamellaires graphite–SbF5 et graphite–SbCl5. Carbon. 1977;15:45.CrossRefGoogle Scholar
  191. 190.
    Shenderova OA, Zhirnov VV, Brenner DW. Carbon nanostructures. Crit Rev Solid State Mater Sci. 2002;27:227.CrossRefGoogle Scholar
  192. 191.
    Krishnan A, Dujardin E, Treacy MMJ, Hugdahl J, Lynum S, Ebbesen TW. Graphitic cones and the nucleation of curved carbon surfaces. Nature. 1997;388:451.CrossRefGoogle Scholar
  193. 192.
    Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater. 2009;8:203.CrossRefGoogle Scholar
  194. 193.
    Choi SM, Seo MH, Kim HJ, Kim WB. Carbon. 2011;49:904–9.CrossRefGoogle Scholar
  195. 194.
    Sprinkle M, Siegel D, Yu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, et al. First direct observation of a nearly ideal graphene band structure. Phys Rev Lett. 2009;103:226–803.CrossRefGoogle Scholar
  196. 195.
    de Parga ALV, Calleja F, Borca BMCG, Passeggi J, Hinarejos JJ, Guinea F, et al. Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett. 2008;100:056807.CrossRefGoogle Scholar
  197. 196.
    Zhang X, Li K, Li H, Lu J, Qiangang F, Chu Y. Graphene nanosheets synthesis via chemical reduction of grapheneoxide using sodium acetate trihydrate solution. Synt Met. 2013;193:132–8.CrossRefGoogle Scholar
  198. 197.
    Park J, Mitchel WC, Grazulis L, Smith HE, Eyink KG, Boeckl JJ, Tomich DH, Pacley SD, Hoelscher JE. Adv Mater. 2010;2:4130–5.Google Scholar
  199. 198.
    Park J, Mitchel WC, Grazulis L, Smith HE, Eyink KG, Boeckl JJ, Tomich DH, Pacley SD, Hoelscher JE. Adv Mater. 2010;2:4140–5.CrossRefGoogle Scholar
  200. 199.
    Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3:101.CrossRefGoogle Scholar
  201. 200.
    He H, Riedl T, Lerf A, Klinowski J. J Phys Chem. 1996;100:19954–8.CrossRefGoogle Scholar
  202. 201.
    Murray CB, Kagan CR, Bawendi MG. Ann Rev Mater Sci. 2000;30:545–610.CrossRefGoogle Scholar
  203. 202.
    Araujo GC, Lima S, Rangel MC, Parola V, Peña MA, Fierro JLG. Catal Today. 2005;107:906–12.CrossRefGoogle Scholar
  204. 203.
    Lee DW, Won JH, Shim KB. Mat Lett. 2003;57:3346–51.CrossRefGoogle Scholar
  205. 204.
    Gajbhiye NS, Bhattacharya UE, Darshane VS. Thermoc Acta. 1995;264:219–30.CrossRefGoogle Scholar
  206. 205.
    Ponce S, Peña MA, Fierro JLG. Appl Catal B. 2000;24:193–205.CrossRefGoogle Scholar
  207. 206.
    Sis LB, Wirtz GP. J Appl Phys. 1973;44:5553–9.CrossRefGoogle Scholar
  208. 207.
    Antolini E. Mater Chem Phys. 2003;78:563–73.CrossRefGoogle Scholar
  209. 208.
    Antolini E. Appl Catal B. 2013;88:1–24.CrossRefGoogle Scholar
  210. 209.
    Stankovic S, Dikin DA, Dommett GHB, Kohlhass KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Nature. 2006;442:282–6.CrossRefGoogle Scholar
  211. 210.
    Sun Y, Wu Q, Shi G. Energy Environ Sci. 2011;4:1113–32.CrossRefGoogle Scholar
  212. 211.
    Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Small. 2011;7:1876–902.CrossRefGoogle Scholar
  213. 212.
    Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Science. 2006;312:1191–8.CrossRefGoogle Scholar
  214. 213.
    Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M. Nano Lett. 2008;8:2012–6.CrossRefGoogle Scholar
  215. 214.
    Choucair M, Thordarson P, Stride JA. Nat Nanotechnol. 2009;4:30–3.CrossRefGoogle Scholar
  216. 215.
    Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J. Adv Funct Mater. 2008;18:1518–25.CrossRefGoogle Scholar
  217. 215a.
    Zhang X, Li K, Li H, Lu J, Qiangang F, Chu Y. Synth Met. 2014;193:132–8.CrossRefGoogle Scholar
  218. 216.
    Wang G, Wang B, Park J, Wang Y, Sun B, Yao J. Carbon. 2009;47:3242–6.CrossRefGoogle Scholar
  219. 217.
    Lee SH, Seo SD, Jin YH, Shim HW, Kim DW. Electrochem Commun. 2010;12:1319–22.Google Scholar
  220. 218.
    Lerf A, He H, Riedl T, Forster M, Klinowski J. Solid State Ionics. 1997;101–103:857–62.CrossRefGoogle Scholar
  221. 219.
    Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez JD, Rojas-Cervantes ML, Martin-Aranda RM. Carbon. 1995;33:1585–92.CrossRefGoogle Scholar
  222. 220.
    Ramesha GK, Sampath S. J Phys Chem C. 2009;113:7985–9.CrossRefGoogle Scholar
  223. 221.
    Wang Z, Zhou X, Zhang J, Boey F, Zhang H. J Phys Chem C. 2009;19:9071–5.Google Scholar
  224. 222.
    Dilimon VS, Sampath S. Thin Solid Films. 2011;519:2323–7.CrossRefGoogle Scholar
  225. 223.
    Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, et al. Room-temperature quantum Hall effect in graphene. Science. 2007;315:979.CrossRefGoogle Scholar
  226. 224.
    Sutter PW, Flege J, Sutter EA. Epitaxial graphene on ruthenium. Nat Mater. 2008;7:406.CrossRefGoogle Scholar
  227. 225.
    Wintterlin J, Bocquet M-L. Graphene on metal surfaces. Surf Sci. 2013;603:1841.CrossRefGoogle Scholar
  228. 226.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442:282.CrossRefGoogle Scholar
  229. 227.
    Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Lopez-Manchado MA. Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem. 2008;18:2221.CrossRefGoogle Scholar
  230. 228.
    Gilje S, Han S, Wang M, Wang KL, Kaner RB. A chemical route to graphene for device applications. Nano Lett. 2007;7:3394.CrossRefGoogle Scholar
  231. 229.
    Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007;7:3499.CrossRefGoogle Scholar
  232. 230.
    Hummers WOR. Preparation of graphite oxide. J Am Chem Soc. 1958;80:939.CrossRefGoogle Scholar
  233. 231.
    Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir. 2008;24:10560.CrossRefGoogle Scholar
  234. 232.
    Negishi R, Hirano H, Ohno Y, Maehashi K, Matsumoto K, Kobayashi Y. Thin Solid Films. 2011;519:6447–52.CrossRefGoogle Scholar
  235. 233.
    Jiao L, Zhang L, Wang X, Diankov G, Dai H. Nature. 2009;458:877–80.CrossRefGoogle Scholar
  236. 234.
    Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN. J Am Chem Soc. 2009;131:3611–20.CrossRefGoogle Scholar
  237. 235.
    Guo J, Ren L, Wang R, Zhang C, Yang Y, Liu T. Compos B Eng. 2011;42:290–5.CrossRefGoogle Scholar
  238. 236.
    Liao KA, Mittal KA, Bose S, Leighton C, Mkhoyan K, Macosko CW. ACS Nano. 2011;5:1253–8.CrossRefGoogle Scholar
  239. 237.
    Fan Z, Wang K, Wei T, Yan J, Song L, Shao B. Carbon. 2010;48:1686–9.CrossRefGoogle Scholar
  240. 238.
    Mei X, Ouyang J. Carbon. 2011;49:5389–97.CrossRefGoogle Scholar
  241. 239.
    Thakur S, Karak N. Carbon. 2012;50:5331–9.CrossRefGoogle Scholar
  242. 240.
    Zhu C, Guo S, Fang Y, Dong S. ACS Nano. 2010;4:2429–37.CrossRefGoogle Scholar
  243. 241.
    Shen J, Li T, Long Y, Shi M, Li N, Ye M. Carbon. 2012;50:2134–40.CrossRefGoogle Scholar
  244. 242.
    Zangmeister CD. Chem Mater. 2010;22:5625–9.CrossRefGoogle Scholar
  245. 243.
    Chen W, Yan L, Bangal PR. J Phys Chem C. 2010;113:19885–90.CrossRefGoogle Scholar
  246. 244.
    Wang G, Shen X, Wang B, Yao J, Park J. Carbon. 2013;47:1359–64.CrossRefGoogle Scholar
  247. 245.
    Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, David C, Ruoff RS. ACS Nano. 2010;2:1227–33.CrossRefGoogle Scholar
  248. 246.
    Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Adv Mater. 2008;20:4490–3.CrossRefGoogle Scholar
  249. 247.
    Lian P, Zhu X, Xiang H, Li Z, Yang W, Wang H. Electrochim Acta. 2010;56:834–40.CrossRefGoogle Scholar
  250. 248.
    Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Talanta. 2010;81:754–9.CrossRefGoogle Scholar
  251. 249.
    Le LT, Ervin MH, Qiu HW, Fuchs BE, Lee WY. Electrochem Commun. 2011;13:355–8.CrossRefGoogle Scholar
  252. 250.
    Xue X, Ma C, Cui C, Xing L. Solid State Sci. 2011;13:1526–30.CrossRefGoogle Scholar
  253. 251.
    Liu C, Alwarappan S, Chen Z, Kong X, Li C. Biosens Bioelectron. 2010;25:1829–33.CrossRefGoogle Scholar
  254. 252.
    Lemme MC, Echtermeyer TJ, Baus M, Szafranek BN, Bolten J, Schmidt M, Wahlbrink T, Kurz H. Solid-State Electron. 2008;52:514–8.CrossRefGoogle Scholar
  255. 253.
    Zhang H, Zheng W, Yan Q, Yang Y, Wang J, Lu Z, Ji G, Yu Z. Polymer. 2010;51:1191–6.CrossRefGoogle Scholar
  256. 254.
    Grande L, Chundi VT, Wei D, Bower C, Andrew P, Ryhänen T. Particuology. 2012;10:1–8.CrossRefGoogle Scholar
  257. 255.
    Pantelic RS, Meyer JC, Kaiser U, Baumeister WF, Plitzko JM. J Struct Biol. 2010;170:152–6.CrossRefGoogle Scholar
  258. 256.
    Chen W, Yan L, Bangal PR. J Phys Chem C. 2010;114:19885–90.CrossRefGoogle Scholar
  259. 257.
    Wang G, Shen X, Wang B, Yao J, Park J. Carbon. 2009;47:1359–64.CrossRefGoogle Scholar
  260. 258.
    Salas EC, Sun ZZ, Lüttge A, Tour JM. ACS Nano. 2010;4:4852–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Martin Schmal
    • 1
    • 2
  • Silvia Moya
    • 1
  1. 1.Chem.Eng. Dept.Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.University of São Paulo (USP)São PauloBrazil

Personalised recommendations