Overview of Climate Change Science

  • G. Thomas FarmerEmail author
Part of the SpringerBriefs in Environmental Science book series (BRIEFSENVIRONMENTAL)


A topical introduction to climate change, with emphasis on January 2013 through February 2014, is outlined in this chapter with a brief introduction to each topic. The reports of the IPCC AR4 and AR5 are briefly described and the IPCC and its history are discussed. The difference between weather and climate is explained with examples of each. Components of the climate system are illustrated. RCPs and ECPs are introduced, explained, and given in tabular form. The uncertainties as used by IPCC AR5 2013 are included. Earth’s energy imbalance is discussed, illustrated, and explained as is its relationship to and cause of global warming. The range of possible climate sensitivities is given along with a discussion. The range of global temperatures is illustrated and discussed. Climate forcing and feedbacks are described and the differences between them are given with examples of each. Carbon capture and sequestration (CCS) is illustrated. The Keeling curve is shown and explained and carbon dioxide is discussed. An introduction to climate modeling is given and illustrated. Earth’s melting ice is shown with examples and illustrations from permafrost, Antarctica, and Greenland.


Antarctica Climate Greenland Representative concentration pathways Energy Imbalance Sensitivity Temperature Components of the climate system Paris London Iceland Atmosphere Carbon dioxide Geosphere Biosphere Hydrosphere Cryosphere Global warming RCPs Modeling Planet earth Denial Textbook Moscow Pakistan Amazon Australia Weather El Niño La Niña UN United Nations IPCC FAR SAR TAR AR4 AR5 Probability WMO World Meteorological Organization Troposphere Stratosphere Scenarios Celsius Charles David keeling Tipping points Sea ice U.S. congress Marcott Keeling curve Skin layer Hansen Glaciers Ice caps Climate change NOAA SRES Atmospheric administration UNEP Obama Herculean 30-year time period Decadal W/m2 CO2 “Goldilocks planet” GHGs Greenhouse effect Enhanced greenhouse effect UV IR GtC GtCO2 3.67 ECS Roswell NM Radiative forcing Mauna Loa ENSO PDO World Ocean Argo floats Kuroshio Current Permafrost 

References and Additional Reading

  1. Abrupt Impacts of Climate Change: Anticipating Surprises (2013) National Research Council, National Academies of Science. ISBN 978-0-309-28773-9Google Scholar
  2. Balmaseda M et al (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161.
  3. Buckley LB, Roughgarden J (2004) Biodiversity conservation: effects of changes in climate and land use. Nature 430(6995). doi: 10.1038/nature02717
  4. CDIAC (2012) Carbon Dioxide Information Analysis Center (CDIAC). CDIAC, Oak RidgeGoogle Scholar
  5. Climate change: evidence and causes. Proceedings of the National Academy of Sciences and the UK Royal SocietyGoogle Scholar
  6. Collins WD et al (2006) Radiative forcing by well-mixed greenhouse gases: estimates from climate models in the intergovernmental panel on climate change (IPCC) fourth assessment report (AR4). J Geophys Res 111(D14317): D14317. Bibcode: 2006JGRD.11114317C. doi: 10.1029/2005JD006713
  7. Dahl-Jensen D et al (2013) Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493(7433):489–494CrossRefGoogle Scholar
  8. Farmer GT, Cook J (2013) Climate change science: a modern synthesis. Springer, Dordrecht and New YorkGoogle Scholar
  9. Feely R, Doney S, Cooley S (2009) Present conditions and future changes in a high-CO2 world. Oceanography 22:36–47CrossRefGoogle Scholar
  10. Fröhlich C, Lean J (1998) The Sun’s total irradiance: cycles and trends in the past two decades and associated climate change uncertainties. Geophys Res Lett 25:4377–4380CrossRefGoogle Scholar
  11. Gazeau F et al (2013) Impacts of ocean acidification on marine shelled molluscs. Marine Biol Zitiert durch: 9 - Ähnliche Artikel - Alle 6 VersionenGoogle Scholar
  12. Hansen J et al (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449. doi: 10.5194/acp-11-13421-2011 Google Scholar
  13. Hansen J et al (2013a) Climate sensitivity, sea level and atmospheric carbon dioxide, vol 371. Royal Society Publishing. doi: 10.1098/rsta.2012.0294
  14. Hansen J et al (2013b) Climate forcing growth rates: doubling down on our Faustian bargain. Environ Res Lett 8:011006. doi: 10.1088/1748-9326/8/1/011006 CrossRefGoogle Scholar
  15. Hansen J et al (2013c) Assessing ‘Dangerous Climate Change’: required reduction of carbon emissions to protect young people. Future generations and nature. PLOS ONE 8:e81468CrossRefGoogle Scholar
  16. Harte J et al (2004) Biodiversity conservation: climate change and extinction risk. Nature 430(6995). doi: 10.1038/nature02718
  17. Introduction to carbon capture and storage—carbon storage and ocean acidification activity. Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Global CCS InstituteGoogle Scholar
  18. IPCC AR4 20047 (2007) Chapter 8: climate models and their evaluation. The IPCC working group I fourth assessment report (2007)Google Scholar
  19. IPCC AR5 report (September 30, 2013) The physical science basisGoogle Scholar
  20. IPCC special report carbon dioxide capture and storage summary for policymakers. Intergovernmental Panel on Climate ChangeGoogle Scholar
  21. Keeling CD, Whorf TP (2004) Atmospheric CO2 from continuous air samples at Mauna Loa Observatory. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, HawaiiGoogle Scholar
  22. Kiehl JT, Trenberth KE (1997) Earth's annual global mean energy budget. Bull Amer Meteor Soc 78:197–208Google Scholar
  23. Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature (published online 28 Aug 2013). doi: 10.1038/nature12534
  24. Marcott SA et al (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339(6124):1198–1201. doi: 10.1126/science.1228026
  25. Mason J (2013) A rough guide to the components of Earth’s Climate System. Posted 7 Oct 2013
  26. Mora C (2013) The projected timing of climate departure from recent variability. Nature 502:183–187. doi: 10.1038/nature12540 CrossRefGoogle Scholar
  27. Moritz C (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264CrossRefGoogle Scholar
  28. National Aeronautics and Space Administration (NASA) (2014) What is the difference between weather and climate?
  29. National Oceanic and Atmospheric Administration (NOAA)—Earth System Research Laboratory (ESRL) (2013) Trends in carbon dioxideGoogle Scholar
  30. Skinner BJ, Porter SC (2004) Dynamic earth: an introduction to physical geology—with CD (5TH 04), paperback. Wiley, New York. ISBN13: 978-0471152286 ISBN10: 0471152285Google Scholar
  31. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007a) Intergovernmental panel on climate change (IPCC), climate change 2007: the physical science basis. Cambridge University Press, Cambridge, 996 ppGoogle Scholar
  32. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), IPCC AR4 WG1 (2007b) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press. ISBN 978-0-521-88009-1 (pb: 978-0-521-70596-7)Google Scholar
  33. Trenberth KE, Fasullo J, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteor Soc 90:311–324Google Scholar
  34. Trenberth KE, Fasullo JT (2013) Changes in the flow of energy through the Earth’s climate system. Meteorol Z 18(4):369–377CrossRefGoogle Scholar
  35. University of Toronto (2013) New long-lived greenhouse gas discovered: highest global-warming impact of any compound to date. Science Daily (9 Dec 2013).
  36. Utting DJ, Gosse JC, Hodgson DA, Trommelen MS, Vickers KJ, Kelley SE, Ward B (2007) Geological Survey of Canada, Natural Resources CanadaGoogle Scholar
  37. Van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  38. Wayne GP (2013) Beginner’s guide to representative concentration pathways. Available online at the following website:
  39. Zachos JC et al (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308(5728):1611–1615. doi: 10.1126/science.1109004 (PMID 15947184)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Farmer EnterprisesLas CrucesUSA

Personalised recommendations