Skip to main content

EPR on Radiation-Induced Defects in SiO2

  • Chapter
  • First Online:
Applications of EPR in Radiation Research

Abstract

Continuous-wave electron paramagnetic resonance (EPR) spectroscopy has been the technique of choice for the studies of radiation-induced defects in silica (SiO2) for 60 years, and has recently been expanded to include more sophisticated techniques such as high-frequency EPR, pulse electron nuclear double resonance (ENDOR), and pulse electron spin echo envelope modulation (ESEEM) spectroscopy. Structural models of radiation-induced defects obtained from single-crystal EPR analyses of crystalline SiO2 (α-quartz) are often applicable to their respective analogues in amorphous silica (a-SiO2), although significant differences are common.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffiths JHE, Owen J, Ward EM (1954) Paramagnetic resonance in neutron irradiated diamond and smoky quartz. Nature 174:439–440

    Google Scholar 

  2. Weeks RA (1956) Paramagnetic resonance of lattice defects in irradiated quartz. J Appl Phys 27:1376–1381

    CAS  Google Scholar 

  3. Nilges MJ, Pan YM, Mashkovtsev RI (2009) Radiation-induced defects in quartz. III. Single-crystal EPR, ENDOR and ESEEM study of a peroxy radical. Phys Chem Miner 36:61–73

    CAS  Google Scholar 

  4. Romanelli M, Di Benedetto F, Bartali L, Innocenti M, Fornaciai G, Montegrossi G, Pardi LA, Zoleo A, Capacci F (2012) ESEEM of industrial quartz powders: insights into crystal chemistry of Al defects. Phys Chem Miner 39:479–490

    CAS  Google Scholar 

  5. Feng PB, Wang Y, Rong X, Su JH, Ju CY, Du JF (2012) Characterization of the electronic structure of E′2 defect in quartz by pulsed EPR spectroscopy. Phys Lett A 376:2195–2199

    CAS  Google Scholar 

  6. Weil JA (1984) A review of electron-spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner 10:149–165

    CAS  Google Scholar 

  7. Weil JA (1993) A review of the EPR spectroscopy of the point-defects in alpha-quartz—the decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and chemistry of SiO2 and the Si–SiO2 interface. Plenum Press, New York, pp 131–144

    Google Scholar 

  8. Weil JA 2000 A demi-century of magnetic defects in alpha-quartz. In: Pacchioni G, Skuja L, Griscom DL (eds) Defects in SiO2 and related dielectrics: science and technology. Kluwer Academic, Dordrecht, pp 197–212

    Google Scholar 

  9. Mashkovtsev RI, Pan Y (2013) Nature of paramagnetic defects in quartz: progresses in the first decade of the 21st century. In: Novak B, Marek P (eds) New developments in quartz research: varieties, crystal chemistry and uses in technology. Nova Science Publisher, New York, pp 65–104.

    Google Scholar 

  10. Han D, West D, Li XB, Xie SY, Sun HB, Zhang SB (2010) Impurity doping in SiO2: formation energies and defect levels from first-principles calculations. Phys Rev B 82:155132

    Google Scholar 

  11. Garrison EG, Rowlett RM, Cowan DL, Holroyd LV (1981) Electron-spin-resonance dating of ancient flints. Nature 290:44–45

    CAS  Google Scholar 

  12. Ikeya M (1993) New applications of electron paramagnetic resonance: ESR dating, dosimetry, and spectroscopy. World Scientific, Singapore

    Google Scholar 

  13. Botis S, Nokhrin SM, Pan Y, Xu Y, Bonli T, Sopuck V (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminence colors and paramagnetic defects. Can Mineral 43:1565–1580

    CAS  Google Scholar 

  14. Botis S, Pan Y, Bonli T, Xu Y, Zhang A, Nokhrin S, Sopuck V (2006) Natural radiation-induced damage in quartz. II. Distribution and implications for uranium mineralization in the Athabasca basin, Saskatchewan, Canada. Can Mineral 44:1387–1402

    CAS  Google Scholar 

  15. Botis S, Pan Y, Nokhrin S, Nilges MJ (2008) Natural radiation-induced damage in quartz. III. A new ozonide radical in drusy quartz from the Athabasca Basin, Saskatchewan. Can Mineral 46:125–138

    CAS  Google Scholar 

  16. Hu B, Pan Y, Botis S, Rogers B, Kotzer T, Yeo G (2008) Radiation-induced defects in drusy quartz, Athabasca basin, Canada: a new aid to exploration of uranium deposits. Econ Geol 103:1571–1580

    CAS  Google Scholar 

  17. Sun Y, Chen H, Tada R, Weiss D, Lin M, Toyoda S, Yan Y, Isozaki Y (2013) ESR signal intensity and crystallinity of quartz from Gobi and sandy deserts in East Asia and implications for tracing Asian dust provenance. Geochem Geophys Geosys 14:2615–2627

    Google Scholar 

  18. Pan Y, Nilges MJ (2014) Electron paramagnetic resonance spectroscopy: basic principles, experimental techniques and applications to Earth and planetary sciences. Rev Mineral Geochem 78:655–690

    CAS  Google Scholar 

  19. Pan Y, Mashkovtsev RI, Huang D, Mao M, Shatskiy A (2011) Mechanisms of Cr and H incorporation in stishovite determined by single-crystal EPR spectroscopy and DFT calculations. Am Mineral 96:1331–1342

    CAS  Google Scholar 

  20. Pan Y, Mao M, Li Z, Botis SM, Mashkovtsev RI, Shatskiy A (2012) Single-crystal EPR study of three radiation-induced defects (Al-O2 3-, Ti3 + and W5 + ) in stishovite. Phys Chem Miner 39:627–637

    CAS  Google Scholar 

  21. Donnay JDH, Le Page Y (1978) The vicissitudes of the low-quartz crystal setting or the pitfalls of enantiomorphism. Acta Crystallogr A34:584–594

    CAS  Google Scholar 

  22. Heaney PJ (1994) Structure and chemistry of the low-pressure silica polymorphs. Rev Mineral 29:1–40

    CAS  Google Scholar 

  23. Feigl FJ, Anderson JH (1970) Defects in crystalline quartz: electron paramagnetic resonance of E′ vacancy centers associated with germanium impurities. J Phys Chem Solids 31:575–596

    CAS  Google Scholar 

  24. Glazer AM, Stadnicka K (1986) On the origin of optical-activity in crystal structures. J Appl Crystallogr 19:108–122

    CAS  Google Scholar 

  25. Tanaka Y, Takeuchi T, Lovesey SW (2008) Right handed or left handed? Forbidden X-ray diffraction reveals chirality. Phys Rev Lett 100:145502

    Google Scholar 

  26. Tanaka Y, Lovesey SW (2012) Determination of absolute chirality using resonant X-ray diffraction. Eur Phys J Special Topics 208:67–74

    CAS  Google Scholar 

  27. Jani MG, Bossoli RB, Halliburton LE (1983) Further characterization of the E′1 center in crystalline SiO2. Phys Rev B 27:2285–2293

    CAS  Google Scholar 

  28. Pan Y, Nilges MJ, Mashkovtsev RI (2009) Radiation-induced defects in quartz: a multifrequency EPR study and DFT modeling of new peroxy radicals. Mineral Mag 73:519–535

    CAS  Google Scholar 

  29. Nelson CM, Weeks RA (1960) Trapped electrons in irradiated quartz and silica: I. Optical absorption. J Am Ceramic Soc 43:396–399

    CAS  Google Scholar 

  30. Weeks RA, Nelson CM (1960) Trapped electrons in irradiated quartz and silica: II. Electron spin resonance. J Am Ceramic Soc 43:399–404

    Google Scholar 

  31. Weeks RA (1963) Paramagnetic spectra of E2 centers in crystalline quartz. Phys Rev 130:570–576

    CAS  Google Scholar 

  32. Solntsev VP, Mashkovtsev RI, Shcherbakova MY (1977) Electron paramagnetic resonance of the radiation centers in quartz. J Struct Chem 18:578–583

    Google Scholar 

  33. Isoya J, Weil JA, Halliburton LE (1981) Electron-paramagnetic-res and ab initio SCF-MO studies of the Si–H–Si system in the E′4 center of alpha-quartz. J Chem Phys 74:5436–5448

    CAS  Google Scholar 

  34. Perlson BD, Weil JA (2008) Electron paramagnetic resonance studies of the E′ centers in alpha-quartz. Can J Phys 86:871–881

    CAS  Google Scholar 

  35. Mashkovtsev RI, Pan Y (2012) Five new E′ centers and their Si-29 hyperfine structures in electron-irradiated alpha-quartz. Phys Chem Miner 39:79–85

    CAS  Google Scholar 

  36. Weeks RA, Magruder RH, Stesmans A (2008) Review of some experiments in the 50 year saga of the E′ center and suggestions for future research. J Non-Cryst Solids 354:208–216

    CAS  Google Scholar 

  37. Mashkovtsev RI, Li Z, Mao M, Pan Y (2013) 73Ge, 17O and 29Si hyperfine interactions of the Ge E¢1 center in crystalline SiO2. J Magn Reson 233:7–16

    CAS  Google Scholar 

  38. Laino T, Donadio D, Kuo IFW (2007) Migration of positively charged defects in alpha-quartz. Phys Rev B 76:195210

    Google Scholar 

  39. Silsbee RH (1961) Electron spin resonance in neutron-irradiated quartz. J Appl Phys 32:1459–1462

    CAS  Google Scholar 

  40. Feigl FJ, Fowler WB, Yip KL (1974) Oxygen vacancy model for the E′1 center in SiO2. Solid State Commun 14:225–229

    CAS  Google Scholar 

  41. Rudra JK, Fowler WB (1987) Oxygen vacancy and the E′1 center in crystalline SiO2. Phys Rev B 35:8223–8230

    CAS  Google Scholar 

  42. Edwards AH, Fowler WB, Feigl FJ (1988) Asymmetrical relaxation of simple E′ centers in silicon dioxide isomorphs. Phys Rev B 37:9000–9005

    CAS  Google Scholar 

  43. Snyder KC, Fowler WB (1993) Oxygen vacancy in alpha-quartz—a possible bistable and metastable defect. Phys Rev B 48:13238–13243

    CAS  Google Scholar 

  44. Giordano L, Sushko PV, Pacchioni G, Shluger AL (2007) Optical and EPR properties of point defects at a crystalline silica surface: Ab initio embedded-cluster calculations. Phys Rev B 75:024109

    Google Scholar 

  45. Boero M, Pasquarello A, Sarnthein J, Car R (1997) Structure and hyperfine parameters of E′(1) centers in α-quartz and in vitreous SiO2. Phys Rev Lett 78:887–890

    CAS  Google Scholar 

  46. Blöchl PE (2000) First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen. Phys Rev B 62:6158–6179

    Google Scholar 

  47. Mysovsky AS, Sushko PV, Mukhopadhyay S, Edwards AH, Shluger AL (2004) Calibration of embedded-cluster method for defect studies in amorphous silica. Phys Rev B 69:085202

    Google Scholar 

  48. Li Z, Pan Y 2012 First-principles calculations of the E′1 center in quartz: structural models, 29Si hyperfine parameters and association with Al impurity. In: Götze J, Möckel R (eds) Quartz, deposits, mineralogy and analytics. Springer, Berlin, pp 161–175

    Google Scholar 

  49. Toyoda S, Hattori W (2000) Formation and decay of the E′1 center and of its precursor. Appl Rad Isotop 52:1351–1356

    CAS  Google Scholar 

  50. Usami T, Toyoda S, Bahadur H, Srivastava AK, Nishido H (2009) Characterization of the E′1 center in quartz: role of aluminum hole centers and oxygen vacancies. Physica B Conden Matter 404:3819–3823

    CAS  Google Scholar 

  51. McEachern RJ, Weil JA, Sawyer B (1992) Distortion and 17O hyperfine interactions in the centers [GeO4] I, II in alpha-quartz. Solid State Commun 81:207–209

    CAS  Google Scholar 

  52. McEachern RJ, Weil JA (1994) 17O hyperfine interaction for the [GeO4] I, II and [GeO4/Li]0 A, C centers in an enriched crystal of alpha-quartz. Phys Rev B 49:6698–6709

    CAS  Google Scholar 

  53. Howarth DF, Mombourquette MJ, Weil JA (1997) The magnetic properties of the oxygen-hole aluminum centres in crystalline SiO2.5. 17O-enriched [AlO4/Li] + and dynamics thereof. Can J Phys 75:99–115

    CAS  Google Scholar 

  54. Nilges MJ, Pan Y, Mashkovtsev RI (2008) Radiation-damage-induced defects in quartz. I. Single-crystal W-band EPR study of hole centers in an electron-irradiated quartz. Phys Chem Miner 35:103–115

    CAS  Google Scholar 

  55. Pan Y, Nilges MJ, Mashkovtsev RI (2008) Radiation-induced defects in quartz. II. Single-crystal W-band EPR study of a natural citrine quartz. Phys Chem Miner 35:387–397

    CAS  Google Scholar 

  56. Pan Y, Hu B (2009) Radiation-induced defects in quartz. IV. Thermal properties and implications. Phys Chem Miner 36:421–430

    CAS  Google Scholar 

  57. Weeks RA, Abraham MM (1965) Spin-one states of defects in quartz. Bull Am Phys Soc 10:374

    Google Scholar 

  58. Bossoli RB, Jani MG, Halliburton LE (1982) Radiation-induced E″ centers in crystalline SiO2. Solid State Commun 44:213–217

    CAS  Google Scholar 

  59. Mashkovtsev RI, Howarth DF, Weil JA (2007) Biradical states of oxygen-vacancy defects in alpha-quartz. Phys Rev B 76:214114

    Google Scholar 

  60. Mashkovtsev RI, Pan Y (2011) Biradical states of oxygen- vacancy defects in alpha-quartz: centers E″(2) and E″(4). Phys Chem Minerals 38:647–654

    CAS  Google Scholar 

  61. Mashkovtsev RI, Pan Y (2012) Stable states of E″ defects in α-quartz. EPL 98:56005

    Google Scholar 

  62. Weil JA, Bolton JR (2007) Electron Paramagnetic Resonance. Wiley, New York

    Google Scholar 

  63. Mashkovtsev RI, Shcherbakova MY, Solntsev VP (1978) Trudy Instituta Geologii I Geofyziki. Akad. Nauk SSSR, Sib. Otd. (Novosibirsk: Nauka) Issue 385, pp 79–86

    Google Scholar 

  64. Maschmeyer D, Lehmann G (1983) New hole-centers in natural quartz. Phys Chem Miner 10:84–88

    CAS  Google Scholar 

  65. Azzoni CB, Meinardi F, Paleari A (1994) Traped-hole centers in neutron-irradiated synthetic quartz. Phys Rev B 49:9182–9185

    Google Scholar 

  66. Känzig W, Cohen MH (1959) Paramagnetic resonance of oxygen in alkali halides. Phys Rev Lett 3:509–510

    Google Scholar 

  67. Lunsford JH (1973) ESR of adsorbed oxygen species. Catal Rev 8:135–156

    CAS  Google Scholar 

  68. Bill H (1969) Investigation on colour centres in alkaline earth fluorides. Helv Phys Acta 42:771–797

    CAS  Google Scholar 

  69. Botis SM, Adriaens DA, Pan Y (2009) Ab initio calculations on the O2 3-Y3 + center in CaF2 and SrF2: its electronic structure and hyperfine constants. Phys Chem Miner 36:1–7

    CAS  Google Scholar 

  70. Ogoh K, Yamanaka C, Ikeya M, Ito E (1996) Two center model for radiation induced aluminum hole center in stishovite. J Phys Chem Solids 57:85–88

    CAS  Google Scholar 

  71. Schlick S (1972) ESR spectrum of O3 trapped in a single crystal of potassium chlorate. J Chem Phys 56:654–661

    CAS  Google Scholar 

  72. Che M, Tench AJ (1983) Caracterization and reactivity of molecular-oxygen species on oxide surfaces. Adv Catal 32:1–148

    CAS  Google Scholar 

  73. Nuttall RHD, Weil JA (1981) The magnetic properties of the oxygen-hole aluminum centers in crystalline SiO2.1. [AlO4]0. Can J Phys 59:1696–1708

    CAS  Google Scholar 

  74. Nuttall RHD, Weil JA (1981) The magnetic properties of the oxygen-hole aluminum centers in crystalline SiO2.3. [AlO4] + . Can J Phys 59:1886–1892

    CAS  Google Scholar 

  75. Walsby CJ, Lees NS, Claridge RFC, Weil JA (2003) The magnetic properties of oxygen-hole aluminum centres in crystalline SiO2. VI: a stable AlO4/Li centre. Can J Phys 81:583–598

    CAS  Google Scholar 

  76. Pacchioni G, Frigoli F, Ricci D, Weil JA (2001) Theoretical description of hole localization in a quartz Al center: the importance of exact electron exchange. Phys Rev B 63:054102

    Google Scholar 

  77. To J, Sokol AA, French SA, Kaltsoyannis N, Catlow CRA (2005) Hole localization in [AlO4]0 defects in silica materials. J Chem Phys 122:144704

    Google Scholar 

  78. Botis SM, Pan Y (2011) Modeling of [AlO4/Li + ] + paramagnetic defects in alpha-quartz. Can J Phys 89:809–816

    CAS  Google Scholar 

  79. Gillen R, Robertson J (2012) Hybrid functional calculations of the Al impurity in alpha quartz: hole localization and electron paramagnetic resonance parameters. Phys Rev B 85:014117

    Google Scholar 

  80. Schnadt R, Räuber A (1971) Motional effects in the trapped-hole center in smoky quartz. Solid State Commun 9:159–161

    CAS  Google Scholar 

  81. Griscom DL (2011) Trapped-electron centers in pure and doped glassy silica: a review and synthesis. J Non-Cryst Solids 357:1945–1962

    CAS  Google Scholar 

  82. Nuttall RHD, Weil JA (1980) Two hydrogenic trapped-hole species in alpha-quartz. Solid State Commun 33:99–102

    CAS  Google Scholar 

  83. Lees NS, Walsby CJ, Williams JAS, Weil JA, Claridge RFC (2003) EPR of a hydrogen/double-lithium centre in alpha-quartz. Phys Chem Miner 30:131–141

    CAS  Google Scholar 

  84. Griscom DL, Friebele EJ, Sigel GH (1974) Observation and analysis of the primary 29Si hyperfine structure of the E′ center in non-crystalline SiO2. Solid State Commun 15:479–483

    CAS  Google Scholar 

  85. Griscom DL (1979) E′ center in glassy SiO2: microwave saturation properties and confirmation of the primary 29Si hyperfine structure. Phys Rev B 20:1823–1834

    CAS  Google Scholar 

  86. Griscom DL (1984) Characterization of three E′-center variants in X-and γ-irradiated high purity a-SiO2. Nucl Instrum Methods Phys Res Sect B 1:481–488

    Google Scholar 

  87. Griscom DL (1985) Defect structure of glasses: some outstanding questions in regard to vitreous silica. J Non-Cryst Solids 73:51–77

    CAS  Google Scholar 

  88. Griscom DL (1991) Optical properties and structure of defects in silica glass. J Ceram Soc Jpn 99:899–916

    Google Scholar 

  89. Shendrik AV, Yudin DM (1978) A new concept of the model for the paramagnetic E′-centre in the SiO2−x system. Phys Stat Sol (b) 85:343–349

    CAS  Google Scholar 

  90. Griscom DL, Friebele EJ (1986) Fundamental radiation-induced defect centers in synthetic fused silicas: atomic chlorine, delocalized E′ centers, and a triplet state. Phys Rev B 34:7524–7533

    CAS  Google Scholar 

  91. Stapelbroek M, Griscom DL, Friebele EJ, Sigel GH (1979) Oxygen-associated trapped-hole centers in high-purity fused silicas. J Non-Cryst Solids 32:313–326

    CAS  Google Scholar 

  92. Friebele EJ, Griscom DL, Stapelbroek M, Weeks RA (1979) Fundamental defect centers in glass: the peroxy radical in irradiated, high-purity, fused silica. Phys Rev Lett 42:1346–1349

    CAS  Google Scholar 

  93. Griscom DL, Friebele EJ (1981) Fundamental defect centers in glass: 29Si hyperfine structure of the nonbridging oxygen hole center and the peroxy radical in a-SiO2. Phys Rev B 24:4896–4898

    CAS  Google Scholar 

  94. Nishikawa H, Nakamura R, Tohmon R, Ohki Y, Sakurai Y, Nagasawa K, Hama Y (1990) Generation mechanism of photoinduced paramagnetic centers from preexisting precursors in high-purity silicas. Phys Rev B 41:7828–7834

    CAS  Google Scholar 

  95. Imai H, Arai K, Isoya J, Hosono H, Abe Y, Imagawa H (1993) Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation. Phys Rev B 48:3116–3123

    CAS  Google Scholar 

  96. Nuccio L, Agnello S, Boscaino R, Brichard B (2009) Effects of high pressure thermal treatments in oxygen and helium atmospheres on amorphous silicon dioxide and its radiation hardness. J Non-Cryst Solids 355:1046–1049

    CAS  Google Scholar 

  97. Kajihara K, Skuja L, Hirano M, Hosono H (2004) Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass. Phys Rev Lett 92:015504–015504

    Google Scholar 

  98. Nishikawa H (2001) Structure and properties of amorphous silicon dioxide-issues on reliability and novel applications 93–122. In Nalwa HS (ed) Silicon-based materials and devices. Academic, USA.

    Google Scholar 

  99. Friebele EJ, Griscom DL, Sigel GH Jr (1974) Defect centers in a germanium-doped silica-core optical fiber. J Appl Phys 45:3424–3428

    CAS  Google Scholar 

  100. Agnello S, Alessi A, Gelardi FM, Boscaino R, Parlato A, Grandi S, Magistris A (2008) Effect of oxygen deficiency on the radiation sensitivity of sol-gel Ge-doped amorphous SiO2. Eur Phys J B 61:25–31

    CAS  Google Scholar 

  101. Tsai TE, Griscom DL (1987) On the structures of hydrogen-associated defect centers in irradiated high-purity a-SiO2:OH. J Non-Cryst Solids 91:170–179

    CAS  Google Scholar 

  102. Griscom DL (1980) E′ center in glassy SiO2: 17O, 1H, and “very weak” 29Si superhyperfine structure. Phys Rev B 22:4192–4202

    CAS  Google Scholar 

  103. Conley JF, Lenahan PM (1993) Room temperature reactions involving silicon dangling bond centers and molecular hydrogen in amorphous SiO2 thin films on silicon. Appl Phys Lett 62:40–42

    CAS  Google Scholar 

  104. Li J, Kannan S, Lahman RL, Sigel GH Jr (1994) Drawing-enhanced defect precursors in low-OH content, oxygen deficient synthetic silica optical fibers. Appl Phys Lett 64:2090–2092

    CAS  Google Scholar 

  105. Li J, Kannan S, Lahman RL, Sigel GH Jr (1995) Electron paramagnetic resonance hyperfine spectrum of the Si E′ defect associated with weakly bonded hydrogen molecules in synthetic silica optical fibers. Appl Phys Lett 66:2816–2818

    CAS  Google Scholar 

  106. Agnello S, Boscaino R, Gelardi FM, Boizot B (2001) Weak hyperfine interaction of E′ centers in gamma- and beta-irradiated silica. J Appl Phys 89:6002–6006

    CAS  Google Scholar 

  107. Vaccaro G, Agnello S, Buscarino G, Nuccio L, Grandi S, Mustarelli P (2009) 29Si attribution of the 1.3 mT hyperfine structure of the E′γ centers in amorphous SiO2. J Appl Phys 105:093514–093516

    Google Scholar 

  108. Griscom DL, Cook M (1995) 29Si superhyperfine interactions of the E′ center: a potential probe of range-II order in silica glass. J Non-Cryst Solids 182:119–134

    CAS  Google Scholar 

  109. Griscom DL (2000) The nature of point defects in amorphous silicon dioxide 117–159; Askins CG (2000) Periodic UV-induced index modulations in doped-silica optical fibers: formation and properties of the fiber Bragg grating 391–426. In: Pacchioni G, Skuja L, Griscom DL (eds) Defects in SiO2 and related dielectrics: science and technology. Kluwer Academic, Dordrecht

    Google Scholar 

  110. Mukhopadhyay S, Sushko PV, Stoneham AM, Shluger AL (2004) Modeling of the structure and properties of oxygen vacancies in amorphous silica. Phys Rev B 70:195203–195215

    Google Scholar 

  111. Sushko PV, Mukhopadhyay S, Mysovsky AS, Sulimov VB, Taga A, Shluger AL (2005) Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations. J Phys: Condens Matter 17:S2115–S2140

    CAS  Google Scholar 

  112. Warren WL, Lenahan PM, Robinson B, Stathis JH (1988) Neutral E′ centers in microwave downstream plasma-enhanced chemical-vapor-deposited silicon dioxide. Appl Phys Lett 53:482–484

    CAS  Google Scholar 

  113. Conley JF, Lenahan PM, Evans HL, Lowry RK, Morthorst TJ (1994) Observation and electronic characterization of “new” E′ center defects in technologically relevant thermal SiO2 on Si: an additional complexity in oxide charge trapping. J Appl Phys 76:2872–2880

    CAS  Google Scholar 

  114. Afanas’ev VV, de Nijs JMM, Balk P, Stesmans A (1995) Degradation of the thermal oxide of the Si/SiO2/Al system due to vacuum ultraviolet irradiation. J Appl Phys 78:6481–6490

    Google Scholar 

  115. Afanas’ev VV, Stesmans A (2000) Charge state of paramagnetic E′ centre in thermal SiO2 layers on silicon. J Phys: Condens Matter 12:2285–2290

    Google Scholar 

  116. Kalnitsky A, Ellul JP, Poindexter EH, Caplan PJ, Lux RA, Boothroyd AR (1990) Rechargeable E′ centers in silicon-implanted SiO2 films. J Appl Phys 67:7359–7367

    CAS  Google Scholar 

  117. Uchino T, Takahashi M, Yoko T (2001) E′ centers in amorphous SiO2 revisited: a new look at an old problem. Phys Rev Lett 86:5522–5525

    CAS  Google Scholar 

  118. Uchino T (2001) Ab initio cluster calculations on point defects in amorphous SiO2. Curr Opin Sol State Mat Sci 5:517–523

    CAS  Google Scholar 

  119. Uchino T (2005) Structure and properties of amorphous silica and its related materials: recent developments and future directions. J Ceram Soc Jpn 113:17–25

    CAS  Google Scholar 

  120. Lu ZY, Nichlaw CJ, Fleetwood DM, Schrimpf RD, Pantelides ST (2002) Structure, properties, and dynamics of oxygen vacancies in amorphous SiO2. Phys Rev Lett 89:285505–285504

    Google Scholar 

  121. Agnello S, Boscaino R, Buscarino G, Cannas M, Gelardi FM (2002) Structural relaxation of E′γ centers in amorphous silica. Phys Rev B 66:113201–113204

    Google Scholar 

  122. Agnello S, Boscaino R, Buscarino G, Gelardi FM (2004) Experimental evidence for two different precursors of E′γ centers in silica. J Non-Cryst Solids 345, 346:505–508

    Google Scholar 

  123. Buscarino G, Agnello S, Parlato A (2007) Electron paramagnetic resonance line shape investigation of the 29Si hyperfine doublet of the E′γ center in a-SiO2. Phys Stat Sol (c) 4:1301–1304

    CAS  Google Scholar 

  124. Agnello S, Buscarino G, Gelardi FM, Boscaino R (2008) Optical absorption band at 5.8 eV associated with the E′γ centers in amorphous silicon dioxide: optical absorption and EPR measurements. Phys Rev B 77:195206–195207

    Google Scholar 

  125. Messina F, Cannas M (2005) In situ observation of the generation and annealing kinetics of E′centres induced in amorphous SiO2 by 4.7 eV laser irradiation. J Phys: Condens Matter 17:3837–3842

    CAS  Google Scholar 

  126. Messina F, Cannas M (2006) Photochemical generation of E′ centres from Si-H in amorphous SiO2 under pulsed ultraviolet laser radiation. J Phys: Condens Matter 18:9967–9973

    CAS  Google Scholar 

  127. Imai H, Arai K, Hosono H, Abe Y, Arai T, Imagawa H (1991) Dependence of defects induced by excimer laser on intrinsic structural defects in synthetic silica glasses. Phys Rev B 44:4812–4818

    CAS  Google Scholar 

  128. Leclerc N, Pfleiderer C, Hitzler H, Wolfrum J, Greulich KO, Thomas S, Englisch W (1992) Luminescence and transient absorption bands in fused SiO2 induced by KrF laser radiation at various temperatures. J Non-Cryst Solids 149:115–121

    CAS  Google Scholar 

  129. Nishikawa H, Nakamura R, Ohki Y, Hama Y (1993) Enhanced photogeneration of E′ centers from neutral oxygen vacancies in the presence of hydrogen in high-purity silica glass. Phys Rev B 48:2968–2973

    CAS  Google Scholar 

  130. Buscarino G, Agnello S (2007) Experimental evidence of E′γ centers generation from oxygen vacancies in a-SiO2. J Non-Cryst Solids 353:577–580

    CAS  Google Scholar 

  131. Buscarino G, Agnello S, Gelardi FM (2006) Characterization of E′δ and triplet point defects in oxygen-deficient amorphous silicon dioxide. Phys Rev B 73:045208–045208

    Google Scholar 

  132. Buscarino G, Boscaino R, Agnello S, Gelardi FM (2008) Optical absorption and electron paramagnetic resonance of the E′α center in amorphous silicon dioxide. Phys Rev B 77:155214–155215

    Google Scholar 

  133. Buscarino G, Agnello S, Gelardi FM, Boscaino R (2009) Polyamorphic transformation in-duced by electron irradiation in a-SiO2 glass. Phys Rev B 80:094202–094211

    Google Scholar 

  134. Buscarino G, Vaccaro G, Agnello S, Gelardi FM (2009) Variability of the Si–O–Si angle in amorphous-SiO2 probed by electron paramagnetic resonance and Raman spectroscopy. J Non-Cryst Solids 355:1092–1094

    CAS  Google Scholar 

  135. Devine RAB, Arndt J (1987) Si–O bond-length modification in pressure-densified amorphous SiO2. Phys Rev B 35:9376–9379

    CAS  Google Scholar 

  136. Dooryhee E, Duraud JP, Devine RAB (2000) Radiation-induced defects and structural modifications, 349–421; KurKjian CR, Krol (2000) DM Science and Technology of silica lightguides for telecommunications 449–474. In: Devine RAB, Duraud JP, Dooryhée E (eds) Structure and Imperfections in Amorphous and Crystalline Silicon Dioxide. Wiley, New York

    Google Scholar 

  137. Tsai TE, Griscom DL, Friebele EJ (1990) Si E′ centers and UV-induced compaction in high purity silica. Nucl Instrum Methods Phys Res Sect B 46:265–268

    Google Scholar 

  138. Douillard L, Jollet F, Duraud JP, Devine RAB, Dooryhee E (1992) Radiation damage produced in quartz by energetic ions. Radiat Eff Defects Solids 124:351–370

    CAS  Google Scholar 

  139. Douillard L, Dooryhee E, Duraud JP, Jollet F, Devine RAB (1993) Modifications of the atomic and electronic structure of quartz by high-energy ion irradiation. Radiat Eff Defects Solids 126:237–241

    CAS  Google Scholar 

  140. Buscarino G, Agnello S, Gelardi FM (2009) Structural modifications induced by electron irradiation in SiO2 glass: local densification measurements. Europhys Lett 87:26007–26004

    Google Scholar 

  141. Buscarino G, Agnello S, Gelardi FM, Boscaino R (2010) The role of impurities in the irradiation induced densification of amorphous SiO2. J Phys: Condens Matter 22:255403–255407

    CAS  Google Scholar 

  142. Stesmans A, Clémer K, Afanas’ev VV (2005) Electron spin resonance probing of fundamental point defects in nm-sized silica particles. J Non-Cryst Solids 351:1764–1769

    CAS  Google Scholar 

  143. Clémer K, Stesmans A, Afanas’ev VV (2007) Paramagnetic intrinsic point defects in nm-sized silica particles: interaction with SiO at elevated temperatures. Mat Sci Engin C 27:1475–1478

    Google Scholar 

  144. Stesmans A, Clémer K, Afanas’ev VV (2008) The E′ center as a probe of structural properties of nanometer-sized silica particles. J Non-Cryst Solids 354:233–238

    CAS  Google Scholar 

  145. Stesmans A, Clémer K, Afanas’ev VV (2005) Electron spin resonance probing of fundamental point defects in nanometer-sized silica particles. Phys Rev B 72:155335–155312

    Google Scholar 

  146. Stesmans A, Clemer K, Afanas’ev VV (2008) Primary 29Si hyperfine structure of E′ centers in nm-sized silica: probing the microscopic network structure. Phys Rev B 77:094130–094112

    Google Scholar 

  147. Vaccaro G, Buscarino G, Agnello S, Sporea A, Oproiu C, Sporea DG, Gelardi FM (2012) Structure of amorphous SiO2 nanoparticles probed through the E′γ Centers. J Phys Chem C 116:144–149

    CAS  Google Scholar 

  148. Roder A, Kob W, Binder K (2001) Structure and dynamics of amorphous silica surfaces. J Chem Phys 114:7602–7614

    CAS  Google Scholar 

  149. Alessi A, Iovino G, Buscarino G, Agnello S, Gelardi FM (2013) Entrapping of O2 molecules in nanostructured silica probed by photoluminescence. J Phys Chem C 117:2616–2622

    CAS  Google Scholar 

  150. Alessi A, Agnello S, Buscarino G, Gelardi FM (2013) Structural properties of core and surface of silica nanoparticles investigated by Raman spectroscopy. J Raman Spectrosc 44:810–816

    CAS  Google Scholar 

  151. Uchino T, Takahashi M, Yoko T (2001) Structure and formation mechanism of the E′α center in amorphous SiO2. Appl Phys Lett 78:2730–2732

    CAS  Google Scholar 

  152. Buscarino G, Agnello S, Gelardi FM (2006) 29Si Hyperfine Structure of the E′α center in amorphous silicon dioxide. Phys Rev Lett 97:135502–135504

    CAS  Google Scholar 

  153. Buscarino G (2007)  PhD thesis. http://www.fisica.unipa.it/amorphous/downloads.html

  154. Almaz Optics online  catalog.

    Google Scholar 

  155. Quartz and Silice, Nemours, France, catalogue OPT-91–3.

    Google Scholar 

  156. Starna LTD (Romford England)

    Google Scholar 

  157. Tohmon R, Shimogaichi Y, Tsuta Y, Munekuni S, Ohki Y, Hama Y, Nagasawa K (1990) Triplet-state defect in high-purity silica glass. Phys Rev B 41:7258–7260

    CAS  Google Scholar 

  158. Zhang L, Leisure RG (1996) The E′δ and triplet-state centers in x-irradiated high-purity amorphous SiO2. J Appl Phys 80:3744–3749

    CAS  Google Scholar 

  159. Nishikawa H, Watanabe E, Ito D, Sakurai Y, Nagasawa K, Ohki Y (1996) Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2. J Appl Phys 80:3513–3517

    CAS  Google Scholar 

  160. Zvanut ME, Stahlbush RE, Carlos WE (1992) Radiation-induced E′ centers in H2-annealed oxide films. Appl Phys Lett 60:2989–2991

    CAS  Google Scholar 

  161. Devine RAB, Mathiot D, Warren WL, Fleetwood DM, Aspar B (1993) Point defect generation during high temperature annealing of the Si–SiO2 interface. Appl Phys Lett 63:2926–2928

    CAS  Google Scholar 

  162. Conley JF, Lenahan PM, Evans HL, Lowry RK, Morthorst TJ (1994) Observation and electronic characterization of two E′ center charge traps in conventionally processed thermal SiO2 on Si. Appl Phys Lett 65:2281–2283

    CAS  Google Scholar 

  163. Warren WL, Fleetwood DM, Shaneyfelt MR, Winokur PS, Devine RAB (1994) Defect-defect hole transfer and the identity of border traps in SiO2 films. Phys Rev B 50:14710–14713

    CAS  Google Scholar 

  164. Zvanut ME, Chen TL, Stahlbush RE, Steigerwalt ES, Brown GA (1995) Generation of thermally induced defects in buried SiO2 films. J Appl Phys 77:4329–4333

    CAS  Google Scholar 

  165. Stesmans A, Afanas’ev VV (1996) Annealing induced degradation of thermal SiO2: S center generation. Appl Phys Lett 69:2056–2058

    CAS  Google Scholar 

  166. Stesmans A, Nouwen B, Pierreux D, Afanas’ev VV (2002) Characterization of S centers generated by thermal degradation in SiO2 on (100)Si. Appl Phys Lett 80:4753–4755

    CAS  Google Scholar 

  167. Stesmans A, Nouwen B, Afanas’ev VV (2002) Structural degradation of thermal SiO2 on Si by high-temperature annealing: defect generation. Phys Rev B 66:045307–045318

    Google Scholar 

  168. Warren WL, Shaneyfelt MR, Schwank JR, Fleetwood DM, Winokur PS, Devine RAB, Maszara WP, McKitterick JB (1993) Paramagnetic defect centers in BESOI and SIMOX buried oxides. IEEE Trans Nucl Sci 40:1755–1764

    CAS  Google Scholar 

  169. Warren WL, Fleetwood DM, Shaneyfelt MR, Schwank JR, Winokur PS, Devine RAB (1993) Excess-Si related defect centers in buried SiO2 thin films. Appl Phys Lett 62:3330–3332

    CAS  Google Scholar 

  170. Vanheusden K, Stesmans (1993) A Characterization and depth profiling of E′ defects in buried SiO2. J Appl Phys 74:275–283

    CAS  Google Scholar 

  171. Conley JF, Lenahan PM (1995) Electron spin resonance analysis of EP center interactions with H2: evidence for a localized EP center structure. IEEE Trans Nucl Sci 42:1740–1743

    CAS  Google Scholar 

  172. Lopez N, Illas F, Pacchioni G (2000) Mechanisms of Proton Formation from Interaction of H2 with E′ and oxygen vacancy Centers in SiO2: cluster Model Calculations. J Phys Chem B 104:5471–5477

    CAS  Google Scholar 

  173. Nicklaw CJ, Lu ZY, Fleetwood DM, Schrimpf RD, Pantelides ST (2002) The structure, properties, and dynamics of oxygen vacancies in amorphous SiO2. IEEE Trans Nucl Sci 49:2667–2673

    CAS  Google Scholar 

  174. Alemany MMG, Chelikowsky JR (2006) Ab initio calculations for the interconversion of optically active defects in amorphous silica. Phys Rev B 73:235211–235215

    Google Scholar 

  175. Chavez JR, Karna SP, Vanheusden K, Brothers CP, Pugh RD, Singaraju BK, Warren WL, Devine RAB (1997) Microscopic structure of the E′δ center in amorphous SiO2: a first principles quantum mechanical investigation. IEEE Trans Nucl Sci 44:1799–1803

    CAS  Google Scholar 

  176. Pineda AC, Karna SP (2000) Effect of hole trapping on the microscopic structure of oxygen vacancy sites in a-SiO2. J Phys Chem A 104:4699–4703

    CAS  Google Scholar 

  177. Karna SP, Pineda AC, Pugh RD, Shed WM, Oldham TR (2000) Electronic structure theory and mechanisms of the oxide trapped hole annealing process. IEEE Trans Nucl Sci 47:2316–2321

    CAS  Google Scholar 

  178. Mukhopadhyay S, Sushko PV, Mashkov VA, Shluger A (2005) Spectroscopic features of dimer and dangling bond E′ centres in amorphous silica. J Phys: Condens Matter 17:1311–1318

    CAS  Google Scholar 

  179. Mukhopadhyay S, Sushko PV, Edwards AH, Shluger AL (2004) Calculation of relative concentrations of E′centres in amorphous silica. J Non-Cryst Solids 345, 346:703–709

    Google Scholar 

  180. Karna SP, Pineda AC, Shedd WM, Singaraju BK (1999) Electronic structure studies of the E′δ and the triplet centers in a-SiO2. The Electrochemical Society, Pennington. NJ 99-3:161–166

    Google Scholar 

  181. Buscarino G, Agnello S, Gelardi FM (2006) Investigation on the microscopic structure of E′δ center in amorphous silicon dioxide by electron paramagnetic resonance spectroscopy. Mod Phys Lett B 20:451–474

    CAS  Google Scholar 

  182. Buscarino G, Agnello S, Gelardi FM (2005) Delocalized Nature of the E′δ center in amorphous silicon dioxide. Phys Rev Lett 94:125501–125504

    CAS  Google Scholar 

  183. Buscarino G, Agnello S, Gelardi FM (2006) Hyperfine structure of the E′δ centre in amorphous silicon dioxide. J Phys: Condens Matter 18:5213–5219

    CAS  Google Scholar 

  184. Buscarino G, Agnello S, Gelardi FM, Parlato A (2007) Electron paramagnetic resonance investigation on the hyperfine structure of the E′δ center in amorphous silicon dioxide. J Non-Cryst Solids 353:518–521

    CAS  Google Scholar 

  185. Stesmans A, Jivanescu M, Afanas’ev VV (2011) Multi-frequency ESR analysis of the E′δ defect hyperfine structure in SiO2 glasses. EPL 93:16002–16006

    Google Scholar 

  186. Jivanescu M, Stesmans A, Afanas’ev VV (2011) Multifrequency ESR analysis of the E′δ defect in a-SiO2. Phys Rev B 83:094118–094116

    Google Scholar 

  187. Chiodini N, Meinardi F, Morazzoni F, Pelari A, Scotto R, Spinolo G (1998) Identification of Sn variants of the E′ center in Sn-doped SiO2. Phys Rev B 58:9615–9618

    CAS  Google Scholar 

  188. Skuja L, Kajihara K, Hirano M, Saitoh A, Hosono H (2006) An increased F2-laser damage in ‘wet’ silica glass due to atomic hydrogen: a new hydrogen-related E′-center. J Non-Cryst Solids 352:2297–2302

    CAS  Google Scholar 

  189. Skuja L, Kajihara K, Hirano M, Hosono H (2012) Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials. Nucl Instrum Methods Phys Res Sect B 286:159–168

    CAS  Google Scholar 

  190. Cannas M, Gelardi FM (2004) Vacuum ultraviolet excitation of the 1.9-eV emission band related to nonbridging oxygen hole centers in silica. Phys Rev B 69:153201–153203

    Google Scholar 

  191. Skuja L, Kajihara K, Hirano M, Hosono H (2011) Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2. Phys Rev B 84:205206–205209

    Google Scholar 

  192. Alessi A, Agnello S, Gelardi FM (2012) Properties and generation by irradiation of Germanium point defects in Ge-doped silica 75–150. In Germanno RV (ed) Germanium properties, production and applications. Nova Science Publishers, Inc., New York

    Google Scholar 

  193. Neustruev VB (1994) Colour centers in germanosilicate and optical fibers. J Phys: Condens Matter 6:6901–6936

    CAS  Google Scholar 

  194. Watanabe Y, Kawazoe H, Shibuya K, Muta K (1986) Structure and mechanism of formation of drawing- or radiation-induced defects in SiO2:GeO2 optical fiber. Jap J Appl Phys 25:425–431

    CAS  Google Scholar 

  195. Friebele EJ, Griscom DL (1986) Color center in glass optical fiber waveguides. Mat Res Soc Symp Proc 61:319–331

    CAS  Google Scholar 

  196. Anoikin EV, Guryanov AN, Gusovskii DD, Mashinskii VM, Miroshnichenko SI, Neustruev VB, Tikhomirov VA, Zverev YB (1991) Photoinduced defects in silica glass doped with germanium and cerium. Sov Lightwave Commun 1:123–131

    Google Scholar 

  197. Itoh H, Shimizu M, Horiguchi M (1986) Observation of defect centers in gamma-ray irradiated GeO2 glass. J Non-Cryst Solids 86:261–264

    CAS  Google Scholar 

  198. Du J, Corrales LR, Tsemekhman K, Bylaska EJ (2007) Electron, hole and exciton self-trapping in germanium doped silica glass from DFT calculations with self-interaction correction. Nucl Instrum Methods Phys Res Sec B 255:188–194

    CAS  Google Scholar 

  199. Carbonaro CM, Fiorentini V, Bernardini F (2002) Stability of Ge-related point defects and complexes in Ge-doped SiO2. Phys Rev B 66:233201–233204

    Google Scholar 

  200. Pacchioni G, Mazzeo C (2000) Paramagnetic centers in Ge-doped silica: a first-principles study. Phys Rev B 62:5452–5460

    CAS  Google Scholar 

  201. Dianov EM, Sokolov VO, Sulimov VB (1991) Theory of germanium-related defects in vitreous silicon dioxide [GeO4]- center. Phys Stat Sol (b) 163:177–182

    CAS  Google Scholar 

  202. Chiodini N, Meinardi F, Morazzoni F, Paleari A, Scotti R (1999) Optical transitions of paramagnetic Ge sites created by x-ray irradiation of oxygen-defect-free Ge-doped SiO2 by the sol-gel method. Phys Rev B 60:2429–2435

    CAS  Google Scholar 

  203. Tsai TE, Griscom DL, Friebele EJ, Fleming JW (1987) Radiation-induced defect centers in high-purity GeO2 glass. J Appl Phys 62:2264–2268

    CAS  Google Scholar 

  204. Griscom DL (2011) On the natures of radiation-induced point defects in GeO2-SiO2 glasses: reevaluation of a 26-year-old ESR and optical data set. Opt Mat Express 1:401–412

    Google Scholar 

  205. Fujimaki M, Watanabe T, Katoh T, Kasahara T, Miyazaki N, Ohki Y, Nishikawa H (1998) Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical-fiber gratings. Phys Rev B 57:3920–3926

    CAS  Google Scholar 

  206. Awazu K, Kawazoe H, Yamane M (1990) Simultaneous generation of optical absorption bands at 5.14 and 0.452 eV in 9 SiO2:GeO2 glasses heated under an H2 atmosphere. J Appl Phys 68:2713–2718

    CAS  Google Scholar 

  207. Skuja L (1992) Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study. J Non Cryst Sol 149:77–95

    CAS  Google Scholar 

  208. Fujimaki M, Kasahara T, Shimoto S, Miyazaki N, Tokuhiro S, Seol KS, Ohki Y (1999) Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass. Phys Rev B 60:4682–4687

    CAS  Google Scholar 

  209. Alessi A, Agnello S, Grandi S, Parlato A, Gelardi FM (2009) Refractive index change dependence on Ge(1) defects in γ-irradiated Ge-doped silica. Phys Rev B 80:014103–014106

    Google Scholar 

  210. Alessi A, Agnello S, Gelardi FM, Messina G, Carpanese M (2011) Influence of Ge doping level on the EPR signal of Ge(1), Ge(2) and E′Ge defects in Ge-doped silica. J Non-Cryst Solids 357:1900–1903

    CAS  Google Scholar 

  211. Nishii J, Fukumi K, Yamanaka H, Kawamura K, Hosono H, Kawazoe H (1995) Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: comparison between Hg lamp and excimer laser. Phys Rev B 52:1661–1665

    CAS  Google Scholar 

  212. Awazu K, Onuki H, Muta K (1997) Mechanisms of photo-bleaching of 5 eV optical absorption band in hydrogen loaded Ge-doped SiO2. J Non-Cryst Solids 211:158–163

    CAS  Google Scholar 

  213. Yamaguchi M, Saito K, Ikushima AJ (2002) Formation and relaxation processes of photoinduced defects in a Ge-doped SiO2 glass. Phys Rev B 66:132106–132104

    Google Scholar 

  214. Fujimaki M, Katoh T, Kasahara T, Miyazaki N, Ohki Y (1999) Paramagnetic centres induced in Ge-doped SiO2 glass with UV irradiation. J Phys: Condens Matter 11: 2589–2594

    CAS  Google Scholar 

  215. Essid M, Albert J, Brebner JL, Awazu K (1999) Correlation between oxygen-deficient center concentration and KrF excimer laser induced defects in thermally annealed Ge-doped optical fiber preforms. J Non-Cryst Solids 246:39–45

    CAS  Google Scholar 

  216. Alessi A (2010) PhD thesis http://www.fisica.unipa.it/amorphous/downloads.html.

  217. Alessi A, Agnello S, Sporea DG, Oproiu C, Brichard B, Gelardi FM (2010) Formation of optically active oxygen deficient centers in Ge-doped SiO2 by γ- and β-ray irradiation. J Non-Cryst Solids 356:275–280

    CAS  Google Scholar 

  218. Alessi A, Girard S, Marcandella C, Agnello S, Cannas M, Boukenter A, Ouerdane Y (2011) X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions. J Non-Cryst Solids 357:1966–1970

    CAS  Google Scholar 

  219. Alessi A, Agnello S, Gelardi FM, Grandi S, Magistris A, Boscaino R (2008) Twofold coordinated Ge defects induced by gamma-ray irradiation in Ge-doped SiO2. Opt Exp 16:4895–4900

    CAS  Google Scholar 

  220. Alessi A, Agnello S, Gelardi FM, Boscaino R (2008) Ge-doping dependence of gamma-ray induced germanium lone pair centers in Ge-doped silica. Phys Stat Sol (b) 245: 2128–2131

    CAS  Google Scholar 

  221. Alessi A, Girard S, Cannas M, Agnello S, Boukenter A, Ouerdane Y (2011) Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing. Opt Exp 19:11680–11690

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. David Griscom, Anders Lund and Masaru Shiotani for invitation to participate in this review. YMP and RIM also wish to thank the Natural Science and Engineering Research Council of Canada and the Russian Foundation for Basic Research, respectively, for financial support. AA, SA and GB thank the University of Palermo for financial support and the people of the LAMP group (http://www.fisica.unipa.it/amorphous/)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonino Alessi or Yuanming Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing

About this chapter

Cite this chapter

Alessi, A., Agnello, S., Buscarino, G., Pan, Y., Mashkovtsev, R. (2014). EPR on Radiation-Induced Defects in SiO2 . In: Lund, A., Shiotani, M. (eds) Applications of EPR in Radiation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-09216-4_7

Download citation

Publish with us

Policies and ethics