Skip to main content

Radiation Chemistry of Solid-State Carbohydrates Using EMR

  • Chapter
  • First Online:
Book cover Applications of EPR in Radiation Research

Abstract

We review our research of the past decade towards identification of radiation-induced radicals in solid state sugars and sugar phosphates. Detailed models of the radical structures are obtained by combining EPR and ENDOR experiments with DFT calculations of g and proton HF tensors, with agreement in their anisotropy serving as most important criterion. Symmetry-related and Schonland ambiguities, which may hamper such identification, are reviewed. Thermally induced transformations of initial radiation damage into more stable radicals can also be monitored in the EPR (and ENDOR) experiments and in principle provide information on stable radical formation mechanisms. Thermal annealing experiments reveal, however, that radical recombination and/or diamagnetic radiation damage is also quite important. Analysis strategies are illustrated with research on sucrose. Results on dipotassium glucose-1-phosphate and trehalose dihydrate, fructose and sorbose are also briefly discussed. Our study demonstrates that radiation damage is strongly regio-selective and that certain general principles govern the stable radical formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ueda H, Kuri Z, Shida S (1961) Electron spin resonance studies of gamma-irradiated single crystals of sucrose. J Chem Phys 35:2145

    CAS  Google Scholar 

  2. Shields H, Hamrick P (1962) X-Irradiation damage of sucrose single crystal. J Chem Phys 37:202–203

    CAS  Google Scholar 

  3. Lomaglio G (1967) Résonance Paramagnétique Electronique et Susceptibilité Paramagnétique d’un Monocristal de Saccharose Irradié. C R Séances Acad Sci Ser B 264:1637

    Google Scholar 

  4. Gräslund A, Löfroth G (1975) Free-radicals in gamma-irradiated single-crystals of trehalose dihydrate and sucrose studied by electron-paramagnetic resonance. Acta Chem Scand Ser B 29:475–482

    Google Scholar 

  5. Sagstuen E, Lund A, Awadelkarim O, Lindgren M, Westerling J (1986) Free-radicals in X-irradiated single-crystals of sucrose—a reexamination. J Phys Chem 90:5584−5588

    Google Scholar 

  6. Vanhaelewyn G, Sadlo J, Callens F, Mondelaers W, De Frenne D, Matthys P (2000) A decomposition study of the EPR spectrum of irradiated sucrose. Appl Radiat Isot 52:1221–1227

    CAS  Google Scholar 

  7. Georgieva ER, Pardi L, Jeschke G, Gatteschi D, Sorace L, Yordanov ND (2006) High-field/high-frequency EPR study on stable free radicals formed in sucrose by gamma-irradiation. Free Radic Res 40:553–563

    CAS  Google Scholar 

  8. De Cooman H, Pauwels E, Vrielinck H, Sagstuen E, Callens F, Waroquier M (2008) Identification and conformational study of stable radiation-induced defects in sucrose single crystals using density functional theory calculations of electron magnetic resonance parameters. J Phys Chem B 112:7298–7307

    CAS  Google Scholar 

  9. De Cooman H, Pauwels E, Vrielinck H, Sagstuen E, Van Doorslaer S, Callens F, Waroquier M (2009) ENDOR and HYSCORE analysis and DFT-assisted identification of the third major stable radical in sucrose single crystals X-irradiated at room temperature. Phys Chem Chem Phys 11:1105–1114

    CAS  Google Scholar 

  10. Vanhaelewyn GCAM, Jansen B, Pauwels E, Sagstuen E, Waroquier M, Callens FJ (2004) Experimental and theoretical electron magnetic resonance study on radiation-induced radicals in alpha-L-sorbose single crystals. J Phys Chem A 108:3308–3314

    CAS  Google Scholar 

  11. Pauwels E, De Cooman H, Vanhaelewyn G, Sagstuen E, Callens F, Waroquier M (2008) Radiation-induced radicals in glucose-1-phosphate. II. DFT analysis of structures and possible formation mechanisms. J Phys Chem B 112:15054–15063

    CAS  Google Scholar 

  12. De Cooman H, Tarpan MA, Vrielinck H, Waroquier M, Callens F (2013) Room temperature radiation products in trehalose single crystals: EMR and DFT analysis. Radiat Res 179:313–322

    CAS  Google Scholar 

  13. Tarpan MA, Vrielinck H, De Cooman H, Callens F (2009) Determination of the g tensors for the dominant stable radicals in X-irradiated beta-D-fructose single crystals. J Phys Chem A 113:7994–8000

    CAS  Google Scholar 

  14. Tarpan MA, Pauwels E, Vrielinck H, Waroquier M, Callens F (2010) Electron magnetic resonance and density functional theory study of room temperature X-irradiated beta-D-fructose single crystals. J Phys Chem A 114:12417–12426

    CAS  Google Scholar 

  15. Box HC (1977) Radiation effects: ESR and ENDOR analysis. Academic, New York

    Google Scholar 

  16. Pauwels E, Van Speybroeck V, Waroquier M (2006) Radiation-induced radicals in alpha-D-glucose: comparing DFT cluster calculations with magnetic resonance experiments. Spectrochim Acta A 63:795–801

    Google Scholar 

  17. Pauwels E, Declerck R, Van Speybroeck V, Waroquier M (2008) Evidence for a grotthuss-like mechanism in the formation of the rhamnose alkoxy radical based on periodic DFT calculations. Radiat Res 169:8–18

    CAS  Google Scholar 

  18. Tarpan M, Sagstuen E, Pauwels E, Vrielinck H, Waroquier M, Callens F (2008) Combined electron magnetic resonance and density functional theory study of 10 K X-irradiated beta-D-fructose single crystals. J Phys Chem A 112:3898–3905

    CAS  Google Scholar 

  19. De Cooman H, Pauwels E, Vrielinck H, Sagstuen E, Waroquier M, Callens F (2010) Oxidation and reduction products of X irradiation at 10 K in sucrose single crystals: radical identification by EPR, ENDOR, and DFT. J Phys Chem B 114:666–674

    CAS  Google Scholar 

  20. Tarpan MA, De Cooman H, Sagstuen E, Waroquier M, Callens F (2011) Identification of primary free radicals in trehalose dihydrate single crystals X-irradiated at 10 K. Phys Chem Chem Phys 13:11294–11302

    CAS  Google Scholar 

  21. Aalbergsjö SG, Pauwels E, De Cooman H, Hole EO, Sagstuen E (2013) Structural specificity of alkoxy radical formation in crystalline carbohydrates. Phys Chem Chem Phys 15:9615–9619

    Google Scholar 

  22. Madden KP, Bernhard WA (1979) ESR-ENDOR study of α; -D-glucopyranose single crystals X irradiated at 12 and 77 K. J Phys Chem 83:2643–2649

    CAS  Google Scholar 

  23. Von Sonntag C (2006) Free-radical-induced DNA damage and its repair-A chemical perspective. Springer, Berlin

    Google Scholar 

  24. Nakajima T (1988) Sugar as an emergency populace dosimeter for radiation accidents. Health Phys 55:951–955

    CAS  Google Scholar 

  25. Nakajima T (1989) Possibility of retrospective dosimetry for persons accidentally exposed to ionizing-radiation using electron-spin resonance of sugar and mother-of-pearl. Br J Radiol 62:148–153

    CAS  Google Scholar 

  26. Silveira FAM, Baffa O (1995) Lyoluminescence and ESR measurements on alanine and sucrose dosimeters. Appl Radiat Isot 46:827–830

    CAS  Google Scholar 

  27. Son PK, Ok CI, Kim JW (2001) EPR study of sugar irradiated with X-Rays. J Korean Phys Soc 38:315–317

    CAS  Google Scholar 

  28. Yordanov ND, Gancheva V, Georgieva E (2002) EPR and UV spectroscopic study of table sugar as a high-dose dosimeter. Radiat Phys Chem 65:269–276

    CAS  Google Scholar 

  29. Yordanov ND, Georgieva E (2004) EPR and UV spectral study of gamma-irradiated white and burned sugar, fructose and glucose. Spectrochim Acta A 60:1307–1314

    Google Scholar 

  30. Desrosiers M, Wadley S (2006) Time dependence of the radiation-induced EPR signal in sucrose. Radiat Prot Dosim 118:479–481

    CAS  Google Scholar 

  31. Trompier F, Bassinet C, Wieser A, De Angelis C, Viscomi D, Fattibene P (2009) Radiation-induced signals analysed by epr spectrometry applied to fortuitous dosimetry. Ann Ist Super Sanita 45:287–296

    CAS  Google Scholar 

  32. Karakirova Y, Yordanov ND, De Cooman H, Vrielinck H, Callens F (2010) dosimetric characteristics of different types of saccharides: an EPR and UV spectrometric study. Radiat Phys Chem 79:654–659

    CAS  Google Scholar 

  33. Desrosiers MF (1996) Current status of the EPR method to detect irradiated food. Appl Radiat Isot 47:1621–1628

    CAS  Google Scholar 

  34. European Committee for Standardisation (2001) EN 13708:2001 E: foodstuffs-detection of irradiated food containing crystalline sugar by ESR spectroscopy. CEN, Brussels

    Google Scholar 

  35. Malec-Czechowska K, Strzelczak G, Dancewicz AM, Stachowicz W, Delincée H (2002) Detection of irradiation treatment in dried mushrooms by photostimulated luminescence, EPR spectroscopy and thermoluminescence measurements. Eur Food Res Technol 216:157–165

    Google Scholar 

  36. Yordanov ND, Pachova Z (2006) Gamma-irradiated dry fruits—an example of a wide variety of long-time dependent EPR spectra. Spectrochim Acta A 63:891–895

    Google Scholar 

  37. Guzik GP, Stachowicz W, Michalik J (2008) Study on stable radicals produced by ionizing radiation in dried fruits and related sugars by electron paramagnetic resonance spectro-metry and photostimulated luminescence method-I. D-fructose. Nukleonika 53:S89–S94

    CAS  Google Scholar 

  38. Guzik GP, Stachowicz W, Michalik J (2012) EPR study on sugar radicals utilized for detection of radiation treatment of food. Nukleonika 57:545–549

    CAS  Google Scholar 

  39. Ahn JJ, Akram K, Kwon JH (2012) Electron spin resonance analyses of grinding- and radiation-induced signals in raw and refined sugars. Food Anal Methods 5:1196–1204

    Google Scholar 

  40. Son PK, Choi S-W, Kim SS, Gwag JS (2012) Dosimetry Application of Irradiated D-fructose using the electron paramagnetic resonance. J Magnetics 17:271–274

    Google Scholar 

  41. Ahn J-J, Akram K, Kim H-K, Kwon J-H (2013) Electron spin resonance spectroscopy for the identification of irradiated foods with complex ESR Signals. Food Anal Methods 6:301–308

    Google Scholar 

  42. Mangiacotti M, Marchesani G, Floridi F, Siragusa G, Chiaravalle AE (2013) Official checks by an accredited laboratory on irradiated foods at an Italian market. Food Control 33:307–312

    CAS  Google Scholar 

  43. Schonland DS (1959) On the determination of the principal g-values in electron spin resonance. Proc Phys Soc Lond 73:788–792

    Google Scholar 

  44. Vrielinck H, De Cooman H, Tarpan MA, Sagstuen E, Waroquier M, Callens F (2008) Schonland ambiguity in the electron nuclear double resonance analysis of hyperfine interactions: principles and practice. J Magn Reson 195:196–205

    CAS  Google Scholar 

  45. Nelson WH (1980) Quick-access sample system for low-temperature ESR-ENDOR at K-band. J Magn Reson 37:205–207

    CAS  Google Scholar 

  46. Krzystek J, Sienkiewicz A, Pardi L, Brunel LC (1996) DPPH as a standard for high-field EPR. J Magn Reson 125:207–211

    Google Scholar 

  47. Serway RA, Marshall SA (1967) Electron spin resonance absorption spectra of CO3 − and CO3 3− molecule-ions in irradiated single-crystal calcite. J Chem Phys 46:1949–1952

    CAS  Google Scholar 

  48. Schweiger A, Jeschke G (2001) Principles of pulsed electron paramagnetic resonance. Oxford University Press, Oxford

    Google Scholar 

  49. Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance-elementary theory and practical applications. Wiley, New York

    Google Scholar 

  50. Loncke F, De Cooman H, Khaidukov NM, Vrielinck H, Goovaerts E, Matthys P, Callens F (2007) EPR and ENDOR analysis of Fe3 + impurity centers in fluoroelpasolite lattices. Phys Chem Chem Phys 9:5320–5329

    Google Scholar 

  51. Vrielinck H, De Cooman H, Karakirova Y, Yordanov ND, Callens F (2009) Early-stage evolution of the EPR spectrum of crystalline sucrose at room temperature after high-dose X irradiation. Radiat Res 172:226–233

    CAS  Google Scholar 

  52. Hyde JS (1965) ENDOR of free radicals in solution. J Chem Phys 43:1806

    CAS  Google Scholar 

  53. Robinson BH, Dalton LA, Beth AH, Dalton RL (1976) ENDOR induced electron paramagnetic resonance: application to the resolution of overlapping spectra. Chem Phys 18:321–332

    CAS  Google Scholar 

  54. Andersen MF, Sagstuen E, Henriksen T (1987) Radiation damage to steroids. An ENDOR study to cholest-4-en-3-one. J Magn Reson 71:461–475

    CAS  Google Scholar 

  55. De Cooman H, Pauwels E, Vrielinck H, Dimitrova A, Yordanov ND, Sagstuen E, Waroquier M, Callens F (2008) Radiation-induced defects in sucrose single crystals, revisited: a combined electron magnetic resonance and density functional theory study. Spectrochim Acta A 69:1372−1383

    Google Scholar 

  56. Kusakovskij J, Vrielinck H, Callens F, work in progress

    Google Scholar 

  57. De Cooman H, Keysabyl J, Kusakovskij J, Van Yperen-DeDA, Waroquier M, Callens F, Vrielinck H (2013) Dominant stable radicals in irradiated sucrose: g tensors and contribution to the powder electron paramagnetic resonance spectrum. J Phys Chem B 117:7169–7178

    CAS  Google Scholar 

  58. Vrielinck H, Kusakovskij J, Vanhaelewyn G, Matthys P, Callens F (2014) Understanding the dosimetric powder EPR spectrum of sucrose by identification of the stable radiation-induced radicals. Radiat Prot Dosim 157:118–124

    Google Scholar 

  59. Nelson WH (1980) Estimation of errors in eigenvalues and eigenvectors from magnetic resonance results by use of linear data-fitting techniques. J Magn Reson 38:71–78

    CAS  Google Scholar 

  60. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    CAS  Google Scholar 

  61. Lund A, Thuomas KA, Maruani J (1978) Calculation of powder ESR-spectra of radicals with hyperfine and quadrupolar interactions-application to monochloroalkyl and dichloroalkyl radicals. J Magn Reson 30:505–514

    CAS  Google Scholar 

  62. Sagstuen E, Lund A, Itagaki Y, Maruani J (2000) Weakly coupled proton interactions in the malonic acid radical: single crystal ENDOR Analysis and EPR Simulation at Microwave Saturation. J Phys Chem A 104:6362–6371

    CAS  Google Scholar 

  63. Kang J, Tokdemir S, Shao J, Nelson WH (2003) Electronic g-factor measurement from ENDOR-induced EPR patterns: malonic acid and guanine hydrochloride dihydrate. J Magn Reson 165:128–136

    CAS  Google Scholar 

  64. Theisen H, Sagstuen E (1981) The indole H-adduct radical in single crystals of tryptamine-HCl: an ESR-ENDOR study. J Chem Phys 74:2319–2324

    CAS  Google Scholar 

  65. Sagstuen E, Awadelkarim O, Lund A, Masiakowski J (1986) Trapping site geometry of N2H4  +  radical ion in X-irradiated single-crystals of N2H5HC2O4- an ENDOR study. J Chem Phys 85:3223–3228

    CAS  Google Scholar 

  66. Maes F (1996) Electron paramagnetic resonance and electron nuclear double resonance of chalcogen ions in alkali halide single crystals. PhD thesis, Ghent University (in Dutch)

    Google Scholar 

  67. Dobbs AJ, Gilbert BC, Norman ROC (1971) Electron spin resonance studies. XXVII. Geometry of oxygen-substituted alkyl radicals. J Chem Soc A 1:24–135

    Google Scholar 

  68. Bernhard WA (1984) The use of alpha hyperfine coupling tensors as a measure of unpaired spin density and free radical geometry. J Chem Phys 81:5928–5936

    Google Scholar 

  69. Muto H (1991) Trapped anions in organic systems. In: Lund A, Shiotani M (eds) Radical ionic systems. Properties in condensed phases. Kluwer, Dordrecht, pp 337–360

    Google Scholar 

  70. Sørnes AR, Sagstuen E (1995) ENDOR study of 1H couplings in single crystals of 2-aminoethyl hydrogen sulfate X-irradiated at 295 K. Radical geometry analysis using effective dipole center approximations and UHF-INDO calculations. J Phys Chem 99:16857–16866

    Google Scholar 

  71. Colson AO, Sevilla MD (1995) Structure and relative stability of deoxyribose radicals in a model DNA backbone: Ab initio molecular orbital calculations. J Phys Chem 99:3867–3874

    CAS  Google Scholar 

  72. Erling PA, Nelson WH (2004) Dependence of alpha-proton hyperfine couplings on free radical geometry. J Phys Chem A 108:7591–7595

    CAS  Google Scholar 

  73. Øhman KT, Sanderud A, Hole EO, Sagstuen E (2006) Single crystals of L-O-serine phosphate X-irradiated at low temperatures: EPR, ENDOR, EIE, and DFT studies. J Phys Chem A 110:8585–9596

    Google Scholar 

  74. McConnell HM, Strathdee J (1959) Theory of anisotropic hyperfine interactions in Pi-electron radicals. Mol Phys 2:129–138

    CAS  Google Scholar 

  75. McConnell HM, Chesnut DB (1958) Theory of isotropic hyperfine interactions in Pi-electron radicals. J Chem Phys 28:107–117

    CAS  Google Scholar 

  76. Heller C, McConnell HM (1960) Radiation damage in organic crystals. 2. Electron spin resonance of (CO2H)CH2CH(CO2H) in beta-succinic acid. J Chem Phys 32:1535–1539

    CAS  Google Scholar 

  77. Morton JR (1964) Electron spin resonance of oriented radicals. Chem Rev 64:453–471

    CAS  Google Scholar 

  78. Bernhard WA, Close DM, Mercer KR, Corelli JC (1976) ESR of X-irradiated single-crystals of 3′-cytidylic acid-hydrogen abstraction from C5′ of sugar moiety. Radiat Res 66:19–32

    CAS  Google Scholar 

  79. Vestad TA, Gustafsson H, Lund A, Hole EO, Sagstuen E (2004) Radiation-induced radicals in lithium formate monohydrate (LiHCO2. H2O). EPR and ENDOR studies of X-irradiated crystal and polycrystalline samples. Phys Chem Chem Phys 6:3017–3022

    Google Scholar 

  80. Ko CL, Box HC (1978) Exchangeable proton couplings in free-radicals-radiation products of hydroxyproline HCl. J Chem Phys 68:5357–5362

    CAS  Google Scholar 

  81. Tarpan MA (2011) Electron magnetic resonance study of the structure and thermal stability of radiation-induced radicals in fructose and trehalose. PhD thesis, Ghent University

    Google Scholar 

  82. McConnell HM, Heller C, Cole T, Fessenden RW (1960) Radiation damage in organic crystals I. CH(COOH)2 in malonic acid. J Am Chem Soc 82:766–775

    CAS  Google Scholar 

  83. McConnell HM, Robertson RE (1957) Spectroscopic splitting factors in aromatic radicals. J Phys Chem 61:1018

    CAS  Google Scholar 

  84. Bernhard WA, Close DM, Hüttermann J, Zehner H (1977) Alkoxy radical, RCH2O, as a free-radical product in X-irradiated single crystals of nucleosides and nucleotides. J Chem Phys 67:1211–1219

    CAS  Google Scholar 

  85. Samskog PO, Lund A (1980) The Alkoxy radical RCHO formed in irradiated single-crystals of rhamnose. Chem Phys Lett 75:525–527

    CAS  Google Scholar 

  86. Lee JY, Box HC (1973) ESR and ENDOR studies of DL-serine irradiated at 4.2 K. J Chem Phys 59:2509–2512

    CAS  Google Scholar 

  87. Box HC, Budzinski EE (1975) Primary radiation damage in thymidine. J Chem Phys 62:197–199

    CAS  Google Scholar 

  88. Locher SE, Box HC (1980) ESR-ENDOR studies of X-irradiated glucose-1-phosphate dipotassium salt. J Chem Phys 72:828–832

    CAS  Google Scholar 

  89. Pauwels E, Lahorte P, Vanhaelewyn G, Callens F, De Proft F, Geerlings P, Waroquier M (2002) Tentative structures for the radiation-induced radicals in crystalline beta-D-fructose using density functional theory. J Phys Chem A 105:12340–12348

    Google Scholar 

  90. Pauwels E, Van Speybroeck V, Vanhaelewyn G, Callens F, Waroquier M (2004) DFT-EPR study of radiation-induced radicals in alpha-D-glucose. Int J Quantum Chem 99:102–108

    CAS  Google Scholar 

  91. Vanhaelewyn GCAM, Pauwels E, Callens FJ, Waroquier M, Sagstuen E, Matthys PFAE (2006) Q-band EPR and ENDOR of low temperature X-irradiated beta-D-fructose single crystals. J Phys Chem A 110:2147–2156

    CAS  Google Scholar 

  92. Pauwels E, Van Speybroeck V, Waroquier M (2006) Study of rhamnose radicals in the solid state adopting a density functional theory cluster approach. J Phys Chem A 110:6504–6513

    CAS  Google Scholar 

  93. Car R, Parrinello M (1985) Unified approach for molecular-dynamics and density-functional theory. Phys Rev Lett 55:2472–2474

    Google Scholar 

  94. CPMD V3.11, Copyright IBM Corp., 1990–2006, Copyright MPI für Festkörperforschung, Stuttgart, 1997–2001

    Google Scholar 

  95. Lippert G, Hutter J, Parrinello M (1997) A hybrid gaussian and plane wave density functional scheme. Mol Phys 92:477–487

    CAS  Google Scholar 

  96. Lippert G, Hutter J, Parrinello M (1999) The gaussian and augmented-plane-wave density functional method for Ab initio molecular dynamics simulations. Theo Chem Acc 103:124–140

    CAS  Google Scholar 

  97. http://www.cp2k.org/

  98. Declerck R, Pauwels E, Van Speybroeck V, Waroquier M (2006) First-principles calculations of hyperfine parameters with the Gaussian and augmented-plane-wave method: application to radicals embedded in a crystalline environment. Phys Rev B 74:art. no. 245103

    Google Scholar 

  99. Declerck R, Van Speybroeck V, Waroquier M (2006) First-principles calculation of the EPR g tensor in extended periodic systems. Phys Rev B 73:art. no. 115113

    Google Scholar 

  100. Weber V, Iannuzzi M, Giani S, Hutter J, Declerck R, Waroquier M (2009) Magnetic linear response properties calculations with the gaussian and augmented-plane-wave method. J Chem Phys 131:art. no. 014106

    Google Scholar 

  101. Tarpan MA, De Cooman H, Hole EO, Waroquier M, Callens F (2012) Radiation products at 77 K in trehalose single crystals: EMR and DFT analysis. J Phys Chem A 116:3377–3387

    CAS  Google Scholar 

  102. Kevorkyants R, Wang X, Close DM, Pavanello M (2013) Calculating hyperfine couplings in large ionic crystals containing hundreds of QM atoms: subsystem DFT is the key. J Phys Chem B 117:13967–13974

    CAS  Google Scholar 

  103. De Cooman H (2009) A combined EMR and DFT study of radiation-induced defects in sucrose and glucose 1-Phosphate. PhD thesis, Ghent University

    Google Scholar 

  104. De Cooman H et al. Unpublished Results (K-band EMR Study of 6 K Irradiated Sucrose)

    Google Scholar 

  105. De Cooman H et al. Unpublished Results (X-band EMR Study of 80K Irradiated Sucrose)

    Google Scholar 

  106. Kusakovskij J (2013). Exploring the possibilities of EPR methods for identifying radiation damage to solids: application to sucrose and silicon. Master thesis, Vilnius University [in Lithuanian]

    Google Scholar 

  107. Box HC, Budzinski EE (1983) A variation of the alkoxy radical. J Chem Phys 79:4142–4145

    CAS  Google Scholar 

  108. Budzinski EE, Potter WR, Potienko G, Box HC (1979) Characteristics of trapped electrons and electron traps in single crystals. J Chem Phys 70:5040–5044

    CAS  Google Scholar 

  109. Box HC, Budzinski EE, Freund HG (1990) Studies of electrons trapped in X-irradiated rhamnose crystals. J Chem Phys 93:262–266

    Google Scholar 

  110. Kevan L, Schlick S, Narayana PA, Feng DF (1981) Application of the semicontinuum potential model to deduce localized electron trapping sites in single crystals of D-sorbitol. J Chem Phys 75:1980–1983

    CAS  Google Scholar 

  111. Samskog PO, Kispert LD, Lund A (1983) Geometric model of trapped electrons in trehalose single crystals X ray irradiated at 3 K. An EPR study. J Chem Phys 78:5790–5794

    CAS  Google Scholar 

  112. Samskog PO, Kispert LD, Lund A (1983) Geometric model of trapped electrons in X-ray-irradiated single-crystals of rhamnose. J Chem Phys 79:635–638

    CAS  Google Scholar 

  113. Ueda H (1963) Electron spin resonance studies of irradiated single crystals of sugars. J Phys Chem 67:2185–2190

    CAS  Google Scholar 

  114. Moens P, Devolder P, Hoogewijs R, Callens F, Verbeeck R (1993) Maximum-likelihood common-factor analysis as a powerful tool in decomposing multicomponent EPR powder spectra. J Magn Reson Ser A 101:1–15

    CAS  Google Scholar 

  115. Bungum B (1992) Radiation-induced radicals in glucose-1-phosphate studied with ESR and ENDOR techniques. Master thesis, University of Oslo (in Norwegian)

    Google Scholar 

  116. De Cooman H, Vanhaelewyn G, Pauwels E, Sagstuen E, Waroquier M, Callens F (2008) Radiation-induced radicals in glucose-1-phosphate. I. Electron paramagnetic resonance and electron nuclear double resonance analysis of in situ X-irradiated single crystals at 77 K. J Phys Chem B 112:15045–15053

    CAS  Google Scholar 

  117. Narendra N, Visvamitra MA (1984) Structure of the dipotassium glucose 1-phosphate dihydrate C6H11O9P2-.2K + .2H2O. Curr Sci 53:1018–1020

    CAS  Google Scholar 

  118. Bungum B, Hole EO, Sagstuen E, Lindgren M (1994) Electron-paramagnetic-resonance of X-irradiated sodium and potassium-salts of glucose-1-phosphate-identification of PO3 2- radicals at room-temperature. Radiat Res 139:194–202

    CAS  Google Scholar 

  119. Sanderud A, Sagstuen E (1996) EPR study of X-irradiated hydroxyalkyl phosphate esters-phosphate radical formation in polycrystalline glucose phosphate, ribose phosphate and glycerol phosphate salts at 77 and 295 K. J Chem Soc Faraday Trans 92:995–999

    CAS  Google Scholar 

  120. Samskog PO, Kispert LD, Lund A (1982) An electron-spin-resonance study of 77 K alkoxy and hydroxyalkyl radicals in X-ray-irradiated trehalose single-crystals. J Chem Phys 77:2330–2335

    CAS  Google Scholar 

  121. Ueda H (1963) Electron spin resonance studies of irradiated single crystals of D-fructose and L-sorbose. J Phys Chem 67:966–968

    CAS  Google Scholar 

  122. Vanhaelewyn G, Lahorte P, De Proft F, Mondelaers W, Geerlings P, Callens F (2001) Electron magnetic resonance study of stable radicals in irradiated D-fructose single crystals. Phys Chem Chem Phys 3:1729–1735

    CAS  Google Scholar 

  123. Vanhaelewyn GCAM, Jansen B, Callens FJ, Sagstuen E (2004) ENDOR-assisted study of the stable EPR spectrum of X-irradiated α; -L-sorbose single crystals: MLCFA and simulation decomposition analyses. Radiat Res 162:96–104

    CAS  Google Scholar 

  124. Jansen B (1992) Radiation induced radicals in single crystals of α; -L-sorbose. ESR-, ENDOR, and pulse radiolysis studies at room temperature. Master thesis, University of Oslo [in Norwegian]

    Google Scholar 

  125. von Sonntag C (1987) The chemical basis of radiation biology. Taylor & Francis, London

    Google Scholar 

  126. Chatgilialogly C (2009) Reactivity of nucleic acid sugar radicals. In: Greenberg MM (ed) Radical and radical ion reactivity in nucleic acid chemistry. Chapter 4. Wiley, New York

    Google Scholar 

  127. Pauwels E, De Cooman H, Waroquier M, Hole EO, Sagstuen E (2014) Solved? The reductive radiation chemistry of alanine. Phys Chem Chem Phys 16:2475–2481

    CAS  Google Scholar 

  128. Sagstuen E, Hole EO, Sanderud A (2004) The solid state radiation chemistry of simple amino acids, revisited. Radiat Res 162:112–119

    CAS  Google Scholar 

  129. Bernhard WA (2009) Radical reaction pathways initiated by direct energy deposition in DNA by ionizing radiation. In: Greenberg MM (ed) Radical and radical ion reactivity in nucleic acid chemistry. Chapter 2. Wiley, New York

    Google Scholar 

  130. Bernhard WA, Close DM (2004) DNA damage dictates the biological consequences of ionizing radiation: the chemical pathways. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter. Chapter 15. Marcel Dekker, New York

    Google Scholar 

  131. Attix FH (1986) Introduction to radiological physics and radiation dosimetry. Wiley, New York

    Google Scholar 

  132. Sanche L (2009) Low-energy electron interaction with DNA: bond dissociations and formation of transient anion, radicals and radical ions. In: Greenberg MM (ed) Radical and radical ion reactivity in nucleic acid chemistry. Chapter 8. Wiley, New York

    Google Scholar 

  133. Bass AD, Sanche L (2004) Interactions of Low Energy Electrons with Atomic and Molecular Solids. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter. Chapter 9. Marcel Dekker, New York

    Google Scholar 

  134. Lund A, Schlick S (1989) Trapped electrons in crystalline media. Res Chem Intermed 11:37–66

    CAS  Google Scholar 

  135. Debije MG, Milano MT, Bernhard WA (1999) DNA responds to ionizing radiation as an insulator, not as a ‘Molecular Wire’. Angew Chem Int Ed 38:2752–2756

    CAS  Google Scholar 

  136. Krivokapic A, Herak JN, Sagstuen E (2008) Proton-coupled hole transfer in X-irradiated doped crystalline cytosine.H2O. J Phys Chem A 112:3597–3606

    CAS  Google Scholar 

  137. Löfroth G, Gejvall T (1974) Radiation induced effects on exchangeable hydrogens in crystalline solids. Acta Chem Scand B 28:777–780

    Google Scholar 

  138. Hart EJ, Anbar M (1970) The hydrated electron. Wiley, New York

    Google Scholar 

  139. Kuper GC, Whitfield GD (1963) Polarons and excitons. Oliver and Boyd, Edinburgh

    Google Scholar 

  140. Sagstuen E, Lindgren M, Lund A (1991) Electron trapping and reactions in rhamnose by ESR and ENDOR. Radiat Res 128:235–242

    CAS  Google Scholar 

  141. Steenken S (1989) Purine bases, nucleosides, and nucleotides: aqueous solution redox chemistry and transformation reactions of their radical cations and e- and OH adducts. Chem Rev 89:503–520

    CAS  Google Scholar 

  142. Grigoriev EI, Trakhtenberg LI (1996) Radiation chemical processes in solid phase-theory and applications. CRC, Boca Raton

    Google Scholar 

  143. Madden KP, Bernhard WA (1980) A 1,2 hydrogen shift and other thermally induced free radical reactions in X-irradiated methyl-alpha-d-glucopyranoside single crystals. An ESR-ENDOR study. J Phys Chem 84:1712–1717

    CAS  Google Scholar 

  144. Box HC, Budzinski EE, Freund HG (1984) The gamut of alkoxy radicals. J Chem Phys 81:4898–4900

    CAS  Google Scholar 

  145. Aalbergsjø SG, Pauwels E, Van Yperen-De Deyne A, Van Speybroeck V, Sagstuen E (2014) Automated generation of radical species in crystalline carbohydrate using ab initio MD simulations. Phys Chem Chem Phys 16:17196–17205

    Google Scholar 

Download references

Acknowledgments

The authors thank the many PhD and Master students whose experimental work has contributed to this chapter, which we dedicate to the memories of Profs. W.H. Nelson and W.A. Bernhard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk Vrielinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing

About this chapter

Cite this chapter

Vrielinck, H., De Cooman, H., Callens, F., Sagstuen, E. (2014). Radiation Chemistry of Solid-State Carbohydrates Using EMR. In: Lund, A., Shiotani, M. (eds) Applications of EPR in Radiation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-09216-4_6

Download citation

Publish with us

Policies and ethics