Skip to main content

Single Crystal EPR Studies of Radicals Produced by Radiolysis of Organophosphorus Compounds

  • Chapter
  • First Online:
Applications of EPR in Radiation Research
  • 1231 Accesses

Abstract

The main radical species produced by radiolysis of organophosphorus compounds are described in this chapter. Their identification is generally based on an analysis of the g and hyperfine tensors obtained from EPR experiments performed on irradiated single crystals. Special emphasis is placed on the properties of the 31P hyperfine tensor, which is often decisive in determining the structure of these radicals. Radiogenic species mentioned in the beginning of this review correspond to simple phosphorus-centered radicals (PR2, PR3 , PR4, PR3 +, and R2PO). Then, more delocalized systems are reported (allylic structures, captodatively stabilized radicals, symmetrical radical ions containing a P–P bond). The effects of radiolysis on compounds containing low-coordinate phosphorus atoms (e.g. phosphaalkenes) are also described as well as the formation of radical pairs in irradiated phosphated sugars. The last part of the chapter deals with metallated radicals formed by radiolysis of metallic complexes M(CO)5P(H)Ph2 (with M = Mo, Cr, W). In some cases, phosphorus-centered radicals are compared with their arsenic analogues. For several systems the focus lies on dynamical effects; this is the case, for example, for the triptycenephosphinyl radical, which undergoes internal rotation around a P–C bond. Molecular rearrangements after radiolysis of some organophosphorus compounds (e.g. diphosphenes) are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leca D, Fensterbank L, Lacote E, Malacria M (2005) Recent advances in the use of phosphorus-centered radicals in organic chemistry. Chem Soc Rev 34:858–865

    CAS  Google Scholar 

  2. Tordo P (2005) Reactivity of phosphorus centered radicals. Topics Current Chem 250:43–76

    Google Scholar 

  3. Bentrude WG (1990) Free radicals reactions of organophosphorus (III). Chem Organophosphorus Compd 1:531–566

    CAS  Google Scholar 

  4. Lund A, Shiotani M (eds) (2003) EPR of free radicals in solids: trends in methods and applications. Prog Theor Chem Phys 10 Springer US

    Google Scholar 

  5. Soulié E, Berclaz T (2005) Electron paramagnetic resonance: nonlinear least-squares fitting of the Hamiltonian parameters from powder spectra with the Levenberg–Marquardt algorithm. Appl Magn Reson 29:401–416

    Google Scholar 

  6. Hanson GR, Noble CJ, Benson S (2003) X-Sophe- XeprView and Molecular Sophe: computer simulation software suites for the analysis of continuous wave and pulsed EPR spectra (in Prog Theor Chem Phys, Lund A, Shiotani M Edts Springer 223–284)

    Google Scholar 

  7. Thiele H, Erstling J, Such P, Höfer P (1992) WIN-EPR: EPR Software Suites from Bruker Corporation. Germany; Hanson GR (2007) XSophe simulation Package. Bruker Biospin, Rheinstetten/Karlsruhe, Germany

    Google Scholar 

  8. Watson RE, Freeman AJ (1961) Hartree-Fock wave functions for the 4p-shell atoms. Phys Rev 124:1117–1123

    CAS  Google Scholar 

  9. Atkins PW, Symons MCR (1967) The structure of inorganic radicals. Elsevier Publishing Company, London

    Google Scholar 

  10. Morton JR, Preston KF (1978) Atomic parameters for magnetic resonance data. J Magn Reson 30:577–582

    CAS  Google Scholar 

  11. Coulson CA (1948) Contribution to the study of molecular structure. Volume commémoratif Victor Henri, Desoer, Liège, pp 15–31

    Google Scholar 

  12. Morehouse RL, Christiansen JJ, Gordy W (1966) E.S.R. of free radicals trapped in inert matrixes at low temperature: P, PH2, and As. J Chem Phys 45:1747–1751

    CAS  Google Scholar 

  13. Nelson W, Jackel G, Gordy W (1970) Electron spin resonance of trapped PF2 and PF4 radicals. J Chem Phys 52:4572–4578

    CAS  Google Scholar 

  14. Wei MS, Current JH, Gendell J (1972) Anisotropic electron spin resonance spectra of phosphorus dichloride and nitrogen dichloride in low temperature matrixes. J Chem Phys 57:2431–2442

    CAS  Google Scholar 

  15. Fullam BW, Mishra SP, Symons MCR (1974) Unstable intermediates. Electron spin resonance study of phosphinyl radicals formed by solid-state radiolysis. J Chem Soc DaltonTrans 20:2145–2148

    Google Scholar 

  16. Fullam BW, Symons MCR (1975) Radiation mechanisms. Electron spin resonance studies of the mechanism of radiation processes in trivalent phosphorus derivatives. J Chem Soc Dalton Trans Inorg Chem 10:861–866

    Google Scholar 

  17. Geoffroy M, Lucken EAC, Mazeline C (1974) Diphenylphosphino radical Ph2P.. Mol Phys 28:839–845

    CAS  Google Scholar 

  18. Ginet L, Geoffroy M (1974) Electron paramagnetic resonance study of the φ-diamino phosphine radical trapped in x-irradiated diphenylaminophosphine oxide single crystals. Helv Chim Acta 57:1761–1765

    CAS  Google Scholar 

  19. Hill NJ, Reeske G, Cowley AH (2010) Reaction of persistent phosphinyl radical P[CH(SiMe3)2]2 with elemental chalcogens. Main group. Chemistry 9:5–10

    CAS  Google Scholar 

  20. Giffin NA, Hendsbee AD, Roemmele TL, Lumsden MD, Pye CC, Masuda JD (2012) Preparation of a diphosphine with persistent phosphinylradical character in solution: characterization, reactivity with O2, S8, Se, Te and P4, and electronic structure calculations. Inorg Chem 51:11837–11850

    CAS  Google Scholar 

  21. Ishida S, Hirakawa F, Iwamot T (2011) A stable dialkylphosphinyl radical. J Am Chem Soc 133:12968–12971

    CAS  Google Scholar 

  22. Back O, Celik MA, Frenking G, Melaimi M, Donnadieu B, Bertrand G (2010) A crystalline phosphinyl radical cation. J Am Chem Soc 132:10262–10263

    CAS  Google Scholar 

  23. Geoffroy M, Ginet L, Lucken EAC (1976) Electron spin resonance study of the diphenylarsino radical (C6H5)2 as produced in a single crystal matrix. J Chem Phys 65:729–732

    CAS  Google Scholar 

  24. Geoffroy M, Ginet L, Lucken EAC (1977) Electron spin resonance study of the radical diphenylantimony trapped in a single crystal matrix. J Chem Phys 66:5292–5295

    CAS  Google Scholar 

  25. Cook WT, Vincent JS (1977) ESR of diphenylantimony radical in a triphenylantimony single crystal. J Chem Phys 67:5766–5769

    CAS  Google Scholar 

  26. Colin J-P, Heitz V, Sauvage J-P (2005) Transition-metal complexed catenanes and rotaxanes in motion: towards molecular machines. Top Curr Chem 262:29–62

    Google Scholar 

  27. Kelly TR, Bowyer MC, Bhaskar KV, Bebbington D, Garcia A, Lang F, Kim M, Jette MP (1994) A molecular brake. J Am Chem Soc 116:3657–3658

    CAS  Google Scholar 

  28. Ramakrishnan G, Jouaiti A, Geoffroy M, Bernardinelli G (1996) 9-Substituted triptycene as a probe for the study of internal rotation around a C–PH Bond in the solid state: a single crystal EPR study at variable temperature. J Phys Chem 100:10861–10868

    CAS  Google Scholar 

  29. Brynda M, Berclaz T, Geoffroy M, Ramakrishnan G (1998) Hindered rotation around a C–PH bond: a single-crystal EPR study of the diphenyldibenzobarrelenephosphinyl radical. J Phys Chem A 102:8245–8250

    CAS  Google Scholar 

  30. Brynda M, Dutan C, Berclaz T, Geoffroy M (2002) Dynamic phenomena in barrelenephosphinyl radicals: a complementary approach by density matrix analysis of EPR spectra and DFT calculations. Current Topics in Biophysics 26:35–42

    CAS  Google Scholar 

  31. Brynda M, Berclaz T, Geoffroy M (2000) Intramolecular motion in dibenzobarrelenephosphinyl radical: a single crystal EPR study at variable temperature. Chem Phys Lett 323:474–481

    CAS  Google Scholar 

  32. Brynda M, Dutan C, Berclaz T, Geoffroy M, Bernardinelli G (2003) Intramolecular motion in the triptycenegermanyl radical: single crystal EPR study at variable temperature and DFT calculations. J Phys Chem Solids 64:939–946

    CAS  Google Scholar 

  33. McConnachie GDG, Rai US, Symons MCR (1993) Electron addition to trimethyl phosphite induced by ionizing radiation: an electron spin resonance study. J Mol Struct 300:527–537

    CAS  Google Scholar 

  34. Hudson RL, Williams F (1979) The radical anion of trimethyl phosphate. J Chem Soc Chem Commun 24:1125–1126

    Google Scholar 

  35. Gerson F, Plattner G, Bock H (1970) ESR spectra of the radical anion of dimethylphenylphosphine. Helv Chim Acta 53:1629–1636

    CAS  Google Scholar 

  36. Cattani-Lorente M, Geoffroy M, Mishra SP, Weber J, Bernardinelli G (1986) Theoretical and single-crystal ESR study of the structure and dissociation of a R2PCl radical anion. J Am Chem Soc 108:7148–7153

    CAS  Google Scholar 

  37. Franzi R, Geoffroy M, Ginet L, Leray N (1979) Structure of selenium-centered radicals. An electron spin resonance study of R2 SeHal trapped in single crystals. J Phys Chem 83:2898–2902

    CAS  Google Scholar 

  38. Cattani-Lorente M, Geoffroy M (1990) Electron capture by trivalent phosphorus compounds: a single crystal ESR study of the chlorodithiaphospholane anion. Chem Phys Lett 167:460–466

    CAS  Google Scholar 

  39. Boate AR, Colussi AJ, Morton JR, Preston KF (1976) ESR spectra of fluorine-containing radicals of phosphorus and arsenic. Chem Phys Lett 37:135–137

    CAS  Google Scholar 

  40. Hamerlinck JHM, Schipper P, Buck HM (1981) Single crystal ESR study of x-irradiated 2-chloro-2,2’-spirobis(1,3,2-benzodioxaphosphole): phosphorus in an octahedral geometry with the unpaired and chlorine in axial positions. Chem Phys Lett 80:358–360

    CAS  Google Scholar 

  41. Geoffroy M, Hwang J, Llinares A (1982) An ESR study of an x-ray irradiated Ph3AsF2 single crystal. J Chem Phys 76:5191–5194

    CAS  Google Scholar 

  42. Hodgson JL, Coote ML (2005) Effects of substituents on the stability of phosphoranyl radicals. J Phys Chem 109:10013–10021

    CAS  Google Scholar 

  43. Giles JRM, Roberts BP (1981) Electron spin Resonance studies of thiophosphoranyl radicals. The mechanism of ligand permutation in phosphoranyl radicals. J Chem Soc Perkin Trans 2:1211–1220

    Google Scholar 

  44. Krusic PJ, Mahler W, Kochi JK (1972) Electron spin resonance spectra and structures of phosphoranyl radicals in solution. J Am Chem Soc 94:6033–6041

    CAS  Google Scholar 

  45. Hasegawa A, Ohnishi K, Sogabe K, Miura M (1975) ESR spectra of phosphorus tetrafluoride radicals produced in a single crystal of phosphorus trifluoride. Mol Phys 30:1367–1375

    CAS  Google Scholar 

  46. Gillbro T, Williams F (1974) Electronic structure of phosphoranyl radicals. J Am Chem Soc 96:5032–5038

    CAS  Google Scholar 

  47. Rundle RE (1963) Implications of some recent structures for chemical valence theory. Surv Progr Chem 1:81–131

    CAS  Google Scholar 

  48. Hamerlinck JHH, Schipper P, Buck HM (1980) ESR study of X-irradiated [HP(OCH2CH2)3N]BF4: phosphorus in a trigonal bipyramidal configuration with the unpaired electron in apical position. J Am Chem Soc 102:5679–5680

    CAS  Google Scholar 

  49. Berclaz T, Geoffroy M, Lucken EAC (1975) An electron spin resonance study of x-irradiated single crystals of the triphenylphosphine-boron trichloride adduct: the triphenylchloro phosphorane radical. Chem Phys Lett 36:677–679

    CAS  Google Scholar 

  50. Hamerlinck JHH, Schipper P, Buck HM (1981a) Single crystal ESR study of the 1,6-dioxa-4,9-diaza-5-phospha(V)spiro[4.4]nonan-5-yl and the 1,6-dioxa-4,9-diaza-2,3,7,8-dibenzo-5-phospha(V)spiro[4.4]nona-2,7-dien-5-yl radicals. J Chem Soc Chem Commun 3:104–106

    Google Scholar 

  51. Hamerlinck JHH, Schipper P, Buck HM (1981b) Stereoisomerization of the tricyclotrioxaazoniaphosphaundecane tetrafluoroborate phosphoranyl radical: a single crystal ESR study. J Chem Soc Chem Commun 21:1148–1149

    Google Scholar 

  52. Hamerlinck JHH, Hermkens PHH, Schipper P, Buck HM (1981c) Single crystal ESR study of the octahydro-2a,4a,6a,8a-tetraaza-8b-phospha(V)pentaleno[1,6-cd]pentalen-8b-yl radical. Evidence of ligand exchange via a Berry pseudorotation mechanism. J Chem Soc Chem Commun 8:358–360

    Google Scholar 

  53. Janssen RAJ, Sonnemans MHW, Buck HM (1986) σ* and TBP-e radicals obtained by electron capture of four-coordinated phosphorus compounds. A single-crystal ESR study. J Am Chem Soc 108:6145–6149

    CAS  Google Scholar 

  54. Berclaz T, Geoffroy M, Lucken EAC (1975) An electron spin resonance study of x-irradiated single crystals of the triphenylphosphine-boron trichloride adduct: the triphenylchlorophosphorane radical. Chem Phys Lett 36:677–679

    CAS  Google Scholar 

  55. Cattani-Lorente M, Bernardinelli G, Geoffroy M (1987) Formation and structure of the phosphoranyl radical derived from 1,2-phenylene phosphorochloridate: a solid-state ESR study. Helv Chim Acta 70:1897–1904

    CAS  Google Scholar 

  56. Janssen RAJ, Kingma JAJM, Buck HM (1988) A single-crystal ESR and quantum chemical study of electron-capture trialkylphosphine sulfide and selenide radical anions with a three-electron bond. J Am Chem Soc 110:3018–3026

    CAS  Google Scholar 

  57. Berclaz T, Geoffroy M, Ginet L, Lucken EAC (1979) Phosphoranyl radicals: an ESR study of triphenylbromophosphoranyl radical trapped in a single crystal. Chem Phys Lett 62:515–518

    CAS  Google Scholar 

  58. Berclaz T, Geoffroy M, Lucken EAC (1979) The EPR spectrum of the triphenylchloroarsanyl radical, Ph3AsCl, trapped in a single crystal of triphenylmethylarsonium chloride. J Magn Reson 33:577–583

    CAS  Google Scholar 

  59. Geoffroy M, Llinares A (1983) ESR study of the Ph3AsBr-radical trapped in an x-irradiated single crystal of Ph3As+CH3Br. Helv Chim Acta 66:76–81

    CAS  Google Scholar 

  60. Geoffroy M, Llinares A, Krzywanska E (1984) ESR study of chalcogenotriphenylarsoranyl radicals Ph3AsX trapped in single crystal matrices. J Magn Reson 58:389–400

    CAS  Google Scholar 

  61. Mishra SP, Symons MCR (1973) Unstable intermediates. Alkyl radical-halide ion adducts. J Chem Soc Perkin Trans 2:391–396

    Google Scholar 

  62. Fujita Y, Katsu T, Sato M, Takahashi K (1974) Carbon-13 hyperfine splittings of normal and abnormal methyl radicals trapped on the porous Vycor glass surface. J Chem Phys 61:4307–4311

    CAS  Google Scholar 

  63. Geoffroy M, Llinares A (1980) Identification and structure of a novel adduct: an ESR study of triphenylarsine-methyl radical trapped in a single crystal matrix. Mol Phys 41:55–62

    CAS  Google Scholar 

  64. Barnes RG, Bray PJ (1955) Nuclear quadrupole resonances of arsenic75. J Chem Phys 23:407

    CAS  Google Scholar 

  65. Geoffroy M, Llinares A, Mishra SP (1986) Electron capture in single crystals of triphenylmethylarsonium iodide. Electron spin resonance detection of iodotriphenylarsoranyl radical. J Chem Soc Faraday Trans 1(82):521–525

    Google Scholar 

  66. Symons MCR, McConnachie GDS (1984) Electron addition to triphenylmethyl arsonium iodide. J Chem Soc Faraday Trans 1(80):211–216

    Google Scholar 

  67. Stewart B, Harriman A, Higham LJ (2011) Predicting the air stability of phosphines. Organometallics 30:5338–5343

    CAS  Google Scholar 

  68. Lalevee J, Morlet-Savary F, Tehfe MA, Graff B, Fouassier JP (2012) Photosensitized formation of phosphorus-centered radicals: application to the design of photoinitiating systems. Macromolecules 45:5032–5039

    CAS  Google Scholar 

  69. Merzougui B, Berchadsky Y, Tordo P, Gronchi G (1997) Trimesityl phosphoniumyl cation radical: electrogeneration and evolution. Electrochim Acta 42:2445–2453

    CAS  Google Scholar 

  70. Begum A, Lyons AR, Symons MCR (1971) Unstable intermediates. Radicals AIR3 , SiR3, PR3 +. Their electron spin resonance spectra and pyramidal character. J Chem Soc A 971:2290–2293

    Google Scholar 

  71. Lyons AR, Symons MCR (1973) Electron spin resonance spectra of γ-irradiated or photolyzed arsines. J Am Chem Soc 95:3483–3485

    CAS  Google Scholar 

  72. Eastland GW, Symons MCR (1977) Unstable intermediates. Triphenyl-phosphonium and -arsonium cations and various phosphoranyl and arsoranyl radicals derived from triphenylphosphine and its oxide, sulfide, and selenide and triphenylarsine and its oxide by the action of ionizing radiation. J Chem Soc Perkin Trans 2:833–838

    Google Scholar 

  73. Hasegawa A, McConnachie GDG, Symons MCR (1984) Preparation and structure of certain phosphorus-centered radical cations. An electron spin resonance study. J Chem Soc Faraday Trans 1(80):1005–1016

    Google Scholar 

  74. Berclaz T, Geoffroy M (1975) Triphenylphosphinium radical cation. Mol Phys 30:549–555

    CAS  Google Scholar 

  75. Bhat SN, Berclaz T, Geoffroy M, Jouaiti A (1995) Radical reactions in a single crystal of phosphaalkene: EPR and ab initio calculations of phosphoniumyl radical cations. J Phys Chem 99:15864–15869

    CAS  Google Scholar 

  76. Sheberla D, Tumanskii B, Tomasik AC, Mitra A, Hill NJ, West R, Apeloig Y (2010) Different electronic structure of phosphonyl radical adducts of N-heterocyclic carbenes, silylenes and germylenes: EPR spectroscopic study and DFT calculations. Chem Science 1:234–241

    CAS  Google Scholar 

  77. Jockusch S, Turro NJ (1998) Phosphinoyl radicals: structure and reactivity. A laser flash photolysis and time-resolved ESR investigation. J Am Chem Soc 120:11773–11777

    CAS  Google Scholar 

  78. Pan XQ, Wang L, Zou JP, Zhang W (2011) Manganese(III)-mediated phosphinoyl radical reactions for stereoselective synthesis of phosphinoylated tetrahydronaphthalenes. J Chem Soc Chemical Commun 47:7875–7877

    CAS  Google Scholar 

  79. Bagryanskaya E, Fedin M, Forbes MDE (2005) CIDEP of micellized radical pairs in low magnetic fields. J Phys Chem A 109:5064–5069

    CAS  Google Scholar 

  80. Tumanskii BL, Bashilov VV, Bubnov NN, Solodovnikov SP, Sokolov VI (1996) EPR study of spin-adducts of dialkylphosphonyl radicals with fullerenes and [60] fullerenemetallocomplexes. Mol Cryst Liq Crys Sci Technol 8:61–64

    CAS  Google Scholar 

  81. Lawrence JB. (doi:10.5772/45779) in “Nitroxides. Theory, Experiment and Applications” edited by Alexander I. Kokorin

    Google Scholar 

  82. Rassat A (1971) Application of electron spin resonance to conformational analysis . Pure Appl Chem 25:623–634

    CAS  Google Scholar 

  83. Geoffroy M, Lucken EAC (1971) Electron spin resonance spectrum of x-irradiated single crystals of diphenylphosphine oxide. Mol Phys 22(2):257–262

    CAS  Google Scholar 

  84. Geoffroy M, Lucken EAC (1972) Electron spin resonance spectrum of x-irradiated phenylphosphinic acid and its salts. Mol Phys 24:335–340

    CAS  Google Scholar 

  85. Kerr CML, Webster K, Williams F (1975) Electron spin resonance studies of γ-irradiated phosphite and phosphate esters. Identification of phosphinyl, phosphonyl, phosphoranyl, and phosphine dimer cation radicals. J Phys Chem 79:2650–2662

    CAS  Google Scholar 

  86. Schlick S, Silver BL, Luz Z (1970) ESR of oxygen-17 labeled PO3 2− ion trapped in a single crystal of Na2DPO3.5D2O. J Chem Phys 52:1232–1237

    CAS  Google Scholar 

  87. Geoffroy M (1973) Electronic paramagnetic resonance spectra of x-ray irradiated crystalline diphenylphosphine sulfide. Helv Chim Acta 56:1552–1557

    CAS  Google Scholar 

  88. Janssen RAJ, Sonnemans MHW, Buck HM (1986) Electron capture phosphoranyl radicals in x-irradiated diphosphine disulfides. A single crystal ESR and ab initio quantum chemical study. J Chem Phys 84:3694–3708

    CAS  Google Scholar 

  89. Geoffroy M, Llinares A (1979) Electron paramagnetic resonance study of trapped radicals in an x-ray irradiated sodium dimethylarsinate single crystal. Helv Chim Acta 62:1605–1613

    CAS  Google Scholar 

  90. Lyons AR, Symons MCR (1974) Effect of high-energy radiation on sodium methylarsonate and propylarsonic acid studied by electron spin resonance spectroscopy. J Chem Phys 60:164–169

    CAS  Google Scholar 

  91. Geoffroy M, Ginet L, Lucken EAC (1977) Electron spin resonance of Ph3P+-13CH2 trapped in a single crystal matrix. Mol Phys 34:1175–1183

    CAS  Google Scholar 

  92. Samskog P-O, Lee S-h, Arroyo CM, Kispert LD, Geoffroy M (1984) Electron paramagnetic resonance study of Ph2P(O)CH2Cl trapped in x-ray irradiated (chloromethyl) diphenylphosphine oxide crystals at 3 K and Ph2P(O)CH2 at 77 K. J Phys Chem 88:1804–1807

    CAS  Google Scholar 

  93. Berclaz T, Geoffroy M (1976) Electron spin study of the radical (C6H5)3P–BH2 trapped in an irradiated single crystal of triphenylphosphineborane. Mol Phys 32:815–821

    CAS  Google Scholar 

  94. Baban JA, Cooksey CJ, Roberts BP (1979) An electron spin resonance study of radical addition to vinylphosphines. J Chem Soc Perkin Trans 2:781–787

    Google Scholar 

  95. Geoffroy M, Rao G, Tancic Z, Bernardinelli G (1990) Trapping and ESR study of an allylic radical involving the participation of a phosphoranyl moiety: R3PCHCR2. J Am Chem Soc 112:2826–2827

    CAS  Google Scholar 

  96. Boekestein G, Jansen EHJM, Buck HM (1974) Phosphoranyl radical in a tetrahedral configuration. J Chem Soc Chem Commun 1974:118–119

    Google Scholar 

  97. Berclaz T, Bernardinelli G, Geoffroy M, Rao G, Tancic Z (1999) EPR/ENDOR study of an X-irradiated single crystal of 1-triphenylphosphoranylidene-2-propanone: the role of hydrogen bonds in the trapping of radiogenic radicals. Rad Phys Chem 56:539–545

    CAS  Google Scholar 

  98. Viehe HG, Janousek Z, Merenyi R, Stella L (1985) The captodative effect. Accounts Chem Res 18:148–154

    CAS  Google Scholar 

  99. Wood ME, Bissiriou S, Lowe C, Windeatt KM (2013) Synthetic use of the primary kinetic isotope effect in hydrogen atom transfer 2: generation of captodatively stabilized radicals. Org Biomol Chem 11:2712–2723

    CAS  Google Scholar 

  100. Khalaf AI (2010) Photochemistry and free radical stabilisation of the captodative centre. Trends Photochem Photobiol 12:7–15

    CAS  Google Scholar 

  101. Steill J, Zhao J, Siu CK, Ke Y, Verkerk UH, Oomens J, Dunbar RC, Hopkinson AC, Siu KWM (2008) Structure of the observable histidine radical cation in the gas phase: a captodative alpha-radical ion. Angew Chem (International ed.) 47:9666–9668

    Google Scholar 

  102. Geoffroy M, Rao G, Tancic Z, Bernardinelli G (1993) Radicals containing both a phosphoranylidene and a ketone group: an electron paramagnetic resonance/electron nuclear double resonance study of their structure and ab initio investigations on the captodative effects. J Chem Soc Faraday Trans 89:2391–2396

    CAS  Google Scholar 

  103. Katritzky AR, Zerner MC, Karelson MM (1986) A quantitative assessment of the merostabilization energy of carbon-centered radicals. J Am Chem Soc 108:7213–7214

    CAS  Google Scholar 

  104. Pasto DJ (1988) Radical stabilization energies of disubstituted methyl radicals. A detailed theoretical analysis of the captodative effect. J Am Chem Soc 110:8164–8175

    CAS  Google Scholar 

  105. Gillbro T, Kerr CMR, Williams F (1974) Electron spin resonance identification of the dimer cation (MeO)3PP(OMe)3 + in γ-irradiated trimethyl phosphate from second-order hyperfine structure. Mol Phys 28:1225–1232

    CAS  Google Scholar 

  106. Lyons AR, Symons MCR (1972) Electron spin resonance of dimeric (σ*) radicals of type (R3X-XR3) with a three electron X-X bond, when X is phosphorus or arsenic. J Chem Soc Faraday Trans 2(68):1589–1594

    Google Scholar 

  107. Janssen RAJ, Sonnemans MHW, Buck HM (1986) Electron capture phosphoranyl radicals in x-irradiated diphosphine disulfides. A single crystal ESR and ab initio quantum chemical study. J Chem Phys 84:3694–3708

    CAS  Google Scholar 

  108. Cetinkaya B, Hudson A, Lappert MF, Goldwhite H (1982) Generation and ESR spectra of some new phosphorus-centered radicals P2Ar2X, P(Ar)X, P(OAr)2, PAr2(:O), PAr[N(SiMe3)2](:NSiMe3), and [P2Ar2]- derived from the bulky group C6H2(CMe3)3-2,4,6 (= Ar). J Chem Soc Chem Commun 1982:609–610

    Google Scholar 

  109. Cattani-Lorente M, Geoffroy M (1989) Structure of the radical resulting from the addition of hydrogen on a phosphorus:phosphorus bond: a theoretical and single crystal electron spin resonance study. J Chem Phys 91:1498–1503

    CAS  Google Scholar 

  110. Geoffroy M, Cattani-Lorente M (1991) Radical reactions in an x-ray irradiated single crystal of diphosphene: an ESR study. Journal de Chimie Physique et de Physico-Chimie Biologique 88:1159–1166

    CAS  Google Scholar 

  111. Loss S, Magistrato A, Cataldo L, Hoffmann S, Geoffroy M, Rothlisberger U, Grutzmacher H (2001) Isolation of a highly persistent diphosphanyl radical: the phosphorus analogue of a hydrazyl. Angew Chem (International ed) 40:723–726

    CAS  Google Scholar 

  112. Cataldo L, Dutan C, Misra SK, Loss S, Gruetzmacher H, Geoffroy M (2005) Using the diphosphanyl radical as a potential spin label: Effect of motion on the EPR spectrum of an R1(R2)P-PR1 radical. Chem Eur J 11:3463–3468

    CAS  Google Scholar 

  113. Close D, Bernhard W (1979) ESR and ENDOR study of 5’dCMP at 6 K. J Chem Phys 70:210–215

    CAS  Google Scholar 

  114. Radons G, Oloff H, Hüttermann J (1981) Free radicals from x-irradiated single crystals of uridine-5’-phosphate disodium salt. Int J Rad Biol 40:245–263

    CAS  Google Scholar 

  115. Stelter L, Von Sonntag C, Schulte-Frolinde D (1976) Phosphate ester cleavage in ribose-5-phosphate induced by OH radicals in deoxygenated aqueous solution. The effect of Fe(II) and Fe(III) ions. Int J Radiat Biol 29:255–269

    CAS  Google Scholar 

  116. Celalyan-Bertier A, Berclaz T, Geoffroy M (1987) An electron spin resonance study of phosphorus-centered radicals trapped in an x-irradiated single crystal of phenoxyphosphoryl xylofuranos derivative. J Chem Soc Faraday Trans1 83:401–409

    Google Scholar 

  117. Berclaz T, Bernardinelli G, Celalyan-Berthier A, Geoffroy M (1988) Radiation Damage in Organic Phosphates. Crystal structure of 3-O-Diphenoxyphosphoryl-1,2-O-isopropylidene 5-O-Trityl- a-D-ribofuranose and an ESR study of the X-irradiated single crystal. J Chem soc Faraday Trans 84:4105–4113

    CAS  Google Scholar 

  118. Nelson D, Symons MCR (1977) Electron capture processes in organic phosphates: an electron spin resonance study. J Chem Soc Perkin II 1977:286–293

    Google Scholar 

  119. Büttner T, Geier J, Frison G, Harmer J, Calle C, Schweiger A, Schönberg H, Grützmacher H (2005) A stable aminyl radical metal complex. Science 307:235–238

    Google Scholar 

  120. Planas JG, Hampel F, Gladysz JA (2005) Generation and reactions of ruthenium phosphide complexes [η5-C5H5)Ru(PR’3)2(PR2)]: remarkably high phosphorus basicities and applications as ligands for palladium-catalyzed Suzuki cross-coupling reactions. Chem Eur J 11:1402–1416

    CAS  Google Scholar 

  121. Burck S, Daniels J, Gans-Eichler T, Gudat D, Nättinen K, Nieger MZ (2005) N-heterocyclic phosphenium, arsenium, and stibenium ions as ligands in transition metal complexes: a comparative eyperimental and computational study. Anorg Allg Chem 631:1403–1412

    CAS  Google Scholar 

  122. Ndiaye B, Bhat S, Jouaiti A, Berclaz T, Bernardinelli G, Geoffroy M (2006) EPR and DFT studies of the structure of phosphinyl radicals complexed by a pentacarbonyl transition metal. J Phys Chem A 110:9736–9742

    CAS  Google Scholar 

  123. Berclaz T, Ndiaye B, Bhat S, Jouaiti A, Geoffroy M (2007) [M(CO)4PPh3] radicals (M = Cr, Mo, W): DFT and single crystal EPR investigations. Chem Phys Lett 440:224–228

    CAS  Google Scholar 

  124. Zalis S, Daniel C, Vleeck A Jr (1999) Structural and electronic changes accompanying reduction of Cr(CO)4(bpy) to its radical anion: a quantum chemical interpretation of spectrochemical experiments. J Chem Soc Dalton Trans 1999:3081–3086

    Google Scholar 

  125. Hynes RC, Preston KF, Springs JJ, Williams AJ (1990) EPR study of the [W(CO)4P(OMe)3] radical anion trapped in a single crystal of [N(PPh3)2] [W(CO)4H{P(OMe)3}]. Organometallics J Chem Soc Dalton Trans 1990:3655–3661

    Google Scholar 

  126. Sidorenkova H, Berclaz T, Ndiaye B, Jouaiti A, Geoffroy M (2009) Single crystal EPR study and DFT structure of the [Mo(CO)5PPh3]+ radical cation. J Phys Chem Solids 70:713–718

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Geoffroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing

About this chapter

Cite this chapter

Geoffroy, M. (2014). Single Crystal EPR Studies of Radicals Produced by Radiolysis of Organophosphorus Compounds. In: Lund, A., Shiotani, M. (eds) Applications of EPR in Radiation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-09216-4_2

Download citation

Publish with us

Policies and ethics