Skip to main content

EPR of Primitive Organic Matter: A Tool for Astrobiology

  • Chapter
  • First Online:
Applications of EPR in Radiation Research

Abstract

Insoluble organic matter (IOM) conserved in ancient sedimentary rocks and in carbonaceous meteorites can reveal valuable information about the origin of Life on Earth and on the birth of the Solar System, respectively. These IOMs are also reference materials for the search for possible organic traces of extinct life on Mars. The combination of continuous-wave and pulsed EPR of the radicals in IOM provided several markers distinguishing these materials and related to their histories. For terrestrial IOM, the EPR linewidth of the radicals is mostly determined by unresolved 1H hyperfine interactions for IOM younger than 2500 million years (H-rich), and by dipolar interactions for older (H-depleted) IOM. The age of very primitive IOM could be estimated through the lineshape, which continuously evolves from Lorentzian to stretched Lorentzian upon ageing due to a change in the dimensionality of the radical spatial distribution. Nuclear spins within or near the radicals and the hyperfine interactions probed by pulsed EPR (through ESEEM and HYSCORE sequences) clearly distinguish meteoritic from terrestrial IOM. Radicals in meteorites are massively enriched in deuterium compared to terrestrial radicals, as a result of specific deuterium enrichment processes in the outer early Solar System. Meteoritic and terrestrial IOMs are also distinguished by the isotropic vs dipolar relative contributions in the 1H hyperfine interactions and by the 13C/1H HYSCORE signal ratio. Strong 31P and 14N HYSCORE signals were detected in terrestrial IOM, which point to possible P and N rich biological precursors. The spin states of the radicals could also be determined either indirectly from the temperature dependence of the EPR intensity or directly by transient nutation spectroscopy. Meteoritic IOM, in addition to S = 1/2 radicals, specifically contains species with either triplet ground state or thermally excited triplet states, which are lacking in terrestrial IOM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westall W (2008) Morphological biosignatures in early terrestrial and extraterrestrial materials. Space Sci Res 135:95–114

    Google Scholar 

  2. Ehrenfreund P, Rasmussen S, Cleaves J, Chen L (2006) Experimentally tracing the key steps in the origin of life: the aromatic world. Astrobiology 6:490–520

    Article  CAS  Google Scholar 

  3. Roeder E (1981) Are the 3800-Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither? Nature 293:159–162

    Article  Google Scholar 

  4. Knoll AH, Golubic S, Green J, Swett K (1986) Organically preserved microbial endoliths from the late Proterozoic of East Greenland. Nature 321:856–857

    Article  CAS  Google Scholar 

  5. Westall W, Folk RL (2003) Exogenous carbonaceous microstructures in Early Archean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–330

    Article  CAS  Google Scholar 

  6. Garcia-Ruiz JM, Hyde ST, Carnerup AM, Christy AG, van Kranendonk MJ, Welham NJ (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197

    Article  CAS  Google Scholar 

  7. Hayatsu R, Matsuoka S, Scott RG, Studier MH, Anders E (1977) Origin of the organic matter in the early solar system, VII: the organic polymers in carbonaceous chondrites. Geochim Cosmochim Acta 41:1325–1339

    Article  CAS  Google Scholar 

  8. Chyba C, Sagan K (1992) Endogenous production, exogenous delivery andimpact-shock synthesis of organic molecules: an inventory for the origin of life. Nature 355:125–132

    Article  CAS  Google Scholar 

  9. Summons RF, Amend JP, Bish D, Buick R, Cody GD, Des Marais DJ, Dromart G, Eigenbrode JL, Knoll AH, Sumner DY (2011) Preservation of Martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11:157–181

    Article  Google Scholar 

  10. Bibring J-P, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthe M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P, and the Omega team (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307:1576–1581

    Article  CAS  Google Scholar 

  11. Mojzsis ST, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRI (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59

    Article  CAS  Google Scholar 

  12. Brasier MD, Green OR, Jephcoat AP, Kleppe AT, van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for earth’s oldest fossils. Nature 416:76–81

    Article  Google Scholar 

  13. Schopf JW, Kudryavtsev AB (2012) Biogenicity of earth’s earliest fossils: a resolution of the controversy. Gondwana Res 22:761–771

    Article  Google Scholar 

  14. Krot AN, Hutcheon ID, Brearley AJ, Pravdivtseva OV, Petaev MI, Hohenberg CM (2006) In Meteorites and the early solar system II (eds Lauretta D and McSween HYJJ). University of Arizona Press, Tucson, p 525

    Google Scholar 

  15. Huss GR, Rubin AE, Grossman JN (2006) In Meteorites and the early solar system II (eds Lauretta D and McSween HYJJ). University of Arizona Press, Tucson, p 567

    Google Scholar 

  16. Robert F, Epstein S (1982) The concentration of isotopic compositions of hydrogen carbon and nitrogen in carbonaceous chondrites. Geochim Cosmochim Acta 16:81–95

    Article  Google Scholar 

  17. Alexander CMO’D, Fogel M, Yabuta H, Cody GD (2007) The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim Cosmochim Acta 71:4380–4403

    Article  CAS  Google Scholar 

  18. Remusat L, Palhol F, Robert F, Derenne S (2006) Enrichment of deuterium in insoluble organic matter from primitive meteorites: a solar system origin? Earth Planet Sci Lett 243:15–25

    Article  CAS  Google Scholar 

  19. Pflug HD, Jaeschke-Boyer H (1979) Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature 280:483–486

    Article  CAS  Google Scholar 

  20. Marschall CP, Marschall AO (2013) Raman hyperspectral imaging of microfossils: potential pitfalls. Astrobiology 13:920–993

    Article  Google Scholar 

  21. Vago J, Gardini B, Kminek G, Baglioni P, Gianfiglio G, Santovicenzo A, Bayon S, van Winendael M (2006) ExoMars-searching for life on the red planet. ESA Bull 126:16–23

    Google Scholar 

  22. Gourier D, Delpoux O, Skrzypczak-Bonduelle A, Binet L, Ciofini I, Vezin H (2010) EPR, ENDOR and HYSCORE study of the structure and the stability of vanadyl-porphyrin complexes encapsulated in silica : potential paramagnetic biomarkers for the origin of life. J Phys Chem B 114:3714–3725

    Article  CAS  Google Scholar 

  23. Kim SS, Bargar J, Nealson KH, Flood B, Kirschvink J, Raub T, Tebo B, Villalobos M (2011) Searching for biosignatures using electron paramagnetic resonance (EPR) analysis of manganese oxides. Astrobiology 11:775–786

    Article  CAS  Google Scholar 

  24. Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Organic Geochem 38:719–833

    Article  CAS  Google Scholar 

  25. Marchand A, Conard J (1980), Electron paramagnetic resonance in kerogen studies. In: Durand B (ed) Kerogen: Insoluble organic matter from sedimentary rocks. Technip, Paris, pp 243–270

    Google Scholar 

  26. Skrzypczak-Bonduelle A, Binet L, Delpoux O, Vezin H, Derenne S, Robert F, Gourier D (2008) EPR of radicals in primitive organic matter: a tool for the search of biosignatures of the most ancient traces of life. Appl Magn Reson 133:371–397

    Article  Google Scholar 

  27. Villée F, Duchesne J, Depireux J (1964) Radicaux libres dans les météorites carbonées. CR Acad Sci Paris 258:2376–2379

    Google Scholar 

  28. Schulz KF, Elofson RM (1965) Electron spin resonance studies of organic matter in the Orgueil meteorite. Geochim Cosmochim Acta 29:157–160

    Article  CAS  Google Scholar 

  29. Binet L, Gourier D, Derenne S, Robert F (2002) Heterogeneous distribution of paramagnetic radicals in insoluble organic matter from the Orgueil and Murchison meteorites. Geochim Cosmochim Acta 66:4177–4186

    Article  CAS  Google Scholar 

  30. Silbernagel BG, Gebhard LA, Dyrkacz GR (1984) ESR of carbon radicals in isolated coal macerals. In: Petrakis L and Fraissard J-P (eds) Magnetic resonance, introduction, advanced topics and applications to fossil energy. Reidel, Dortrecht, pp 645–653

    Google Scholar 

  31. Binet L, Gourier D, Derenne S, Pizarello S, Becker L (2004) Diradicaloids in the insoluble organic matter from the Tagish lake meteorite: comparison with the Orgueil and Murchison meteorites. Meteoritic Planetary Science 39:1649–1616

    Article  CAS  Google Scholar 

  32. Singer LS, Lewis IC (1978) ESR study of the kinetics of carbonization. Carbon 16:417–423

    Article  CAS  Google Scholar 

  33. Carniti P, Beltrame PL, Gervasini A, Castelli A, Bergamasco L (1997) Formation of radicals in thermal degradation of kerogen. A kinetic study. J Anal Appl Pyrolysis 40–41:553–568

    Article  Google Scholar 

  34. Mrozowski S (1988) ESR studies of carbonization and coalification processes part II: biological materials. Carbon 26:531–541

    Article  CAS  Google Scholar 

  35. Abragam A (1961) Principle of nuclear magnetism. Clarendon, Oxford

    Google Scholar 

  36. Bourbin M, Derenne S, Gourier D, Rouzaud J-N, Gautret P, Westall F (2012) Electron paramagnetic resonance study of a photosynthetic microbial mat and comparison with Archean cherts. Orig Life Evol Biosph 42:569–485

    Article  CAS  Google Scholar 

  37. Wertz JE, Bolton JR (1986) Electron spin resonance: elementary theory and applications. Chapman & Hall, London

    Book  Google Scholar 

  38. Gourier D, Robert F, Delpoux O, Binet L, Vezin H, Moissette A, Derenne S (2008) Extreme deuterium enrichment of organic radicals in the Orgueil meteorite: revisiting the interstellar interpretation? Geochim Cosmochim Acta 72:1914–1923

    Article  CAS  Google Scholar 

  39. Gourier D, Delpoux O, Binet L, Vezin H (2013) Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites. Astrobiology 13:932–947

    Article  CAS  Google Scholar 

  40. Fel’dman EB, Lacelle S (1996) Configurational averaging of dipolar interactions in magnetically diluted spin networks. J Chem Phys 104:2000–2009

    Article  Google Scholar 

  41. Bourbin M, Gourier D, Derenne S, Binet L, Le Du Y, Westall F, Kremer B, Gautret P (2013) Dating carbonaceous matter in Archean cherts by electron paramagnetic resonance. Astrobiology 13:151–162

    Article  CAS  Google Scholar 

  42. Derenne S, Robert F (2010) Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite. Meteorit Planet Sci 45:1461–1475

    Article  CAS  Google Scholar 

  43. Schweiger A, Jeschke G (2001) Principle of pulsed electron paramagnetic resonance. Oxford University Press, Oxford

    Google Scholar 

  44. Höfer P, Grupp A, Nebenfürh H, Mehring M (1986) Hyperfine sublevel correlation (HYSCORE) spectroscopy: a 2D ESR investigation of squaric acid radical. Chem Phys Lett 132:279–282

    Article  Google Scholar 

  45. Rowen LG, Hahn EL, Mims WB (1965) Electron spin echo modulation. Phys Rev 137:A61–A71

    Article  Google Scholar 

  46. Anderson MW, Kevan LJ (1986) Electron spin resonance and electron spin echo study of Cu2 + in zeolites H-RHO and CSH-RHO. J Phys Chem 90:6452–66459

    Article  CAS  Google Scholar 

  47. Gerson F, Huber W (2003) Electron spin resonance spectroscopy of organic radicals. Wiley, Weinheim

    Book  Google Scholar 

  48. Gordy W (1980) Theory and application of electron spin resonance. Wiley, New York

    Google Scholar 

  49. Pöppl A, Kevan L (1996) A practical strategy for determination of proton hyperfine interaction parameters in paramagnetic transition metal ion complexes by two-dimensional HYSCORE electron spin resonance spectroscopy in disordered systems. J Phys Chem 100:3387–3394

    Article  Google Scholar 

  50. Gardinier A, Derenne S, Robert F, Behar F, Largeau C, Maquet J (2000) Solid state CP/MAS 13C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study. Earth Planet Sci Lett 184:9–21

    Article  CAS  Google Scholar 

  51. Cody GD, Alexander CMO’D (2005) NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochim Cosmochim Acta 69:1085–1097

    Article  CAS  Google Scholar 

  52. Ikoma T, Ito O, Tero-Kubota S, Akiyama K (1998) HYSCORE study on coal radicals. Energy Fuels 12:1363–1368

    Article  CAS  Google Scholar 

  53. Ikoma T, Ito O, Tero-Kubota S (2002) Exploring radicals in carbonaceous solids by means of pulsed EPR spectroscopy. Energy Fuels 16:40–47

    Article  CAS  Google Scholar 

  54. Durand B, Nicaise G (1980) Procedures for kerogen isolation, in Kerogen (edited by Durand B). Technip, Paris, pp 35–53

    Google Scholar 

  55. Jefferts KB, Penzias AA, Wilson RW (1973) Deuterium in the Orion Nebula. Astrophys J 179:L57–L61

    Article  Google Scholar 

  56. Geiss J, Reeves H (1972) Cosmic and solar system abundances of deuterium and helium-3. Astron Astrophys 18:126–132

    CAS  Google Scholar 

  57. Mahaffy PR, Donahue TM, Atreya SK, Owen TC, Niemann HB (1998) Galileo probe measurements of D/H and 3He/4He in Jupiter’s atmosphere. Space Sci Res 84:251–263

    CAS  Google Scholar 

  58. Brown PD, Millar TJ (1989) Models of the gaz-grain interaction-D chemistry. Monthly Notices R Astron Soc 237:661–671

    Article  Google Scholar 

  59. Halbout J, Robert F, Javoy M (1990) Hydogen and oxygen isotope compositions in kerogens from the Orgueil meteorite: clues to the solar origin. Geochim Cosmochim Acta 54:1453–1462

    Article  CAS  Google Scholar 

  60. Kerridge JF (1985) Carbon, hydrogen and nitrogen in carbonaceous meteorites: abundances and isotopic compositions in bulk samples. Geochim Cosmochim Acta 49:1707–1714

    Article  CAS  Google Scholar 

  61. Busemann H, Young AF, Alexander CM, Hoppe P, Mukhopadhyay S, Nittler LR (2006) Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312:727–730

    Article  CAS  Google Scholar 

  62. Remusat L, Robert F, Meibom A, Mostefaoui S, Delpoux O, Binet L, Gourier D, Derenne S (2009) Proto-planetary disk chemistry recorded by D-rich organic radicals in carbonaceous chondrites. Astrophys J 698:2087–2092

    Article  CAS  Google Scholar 

  63. Glassgold A, Feigelson ED, Montmerle T (2000) Effects on energetic radiation in young stellar objects. In: Mannings V, Boss AP and Russel SS (eds) Protostars and planets IV. University Arizona Press, Arizona, pp 429–455

    Google Scholar 

  64. Zhang XM (1998) Homolytic bond dissociation of the C–H bonds adjacent to radical centers. J Org Chem 63:1872–1877

    Article  CAS  Google Scholar 

  65. Remusat L, Ghan Y, Wang Y, Eiler JM (2010) Accretion and preservation of D-rich organic particles in carbonaceous chondrites: evidence for important transport in the early solar system nebula. Astrophys J 713:1048–1058

    Article  CAS  Google Scholar 

  66. Retcovsky HL, Hough MR, Maguire MM, Clarckson RB (1981) Nature of the free radicals in coals, pyrolyses coals, solvent-refined coals and coal liquefaction products. In Coal Structure. Am Chem Soc Advances in Chem Series, 192, n°4, pp 37–58

    Google Scholar 

  67. Conard J (1984) EPR in fossil carbonaceous materials. In: Petrakis L, Fraissard JP (eds) Magnetic resonance, introduction, advanced topics and application to fossil energy. Reidel, Dortrecht, pp 441–459

    Google Scholar 

  68. Rothenberger KS, Sprecher RF, Castellano SM, Retcovsky HL (1993) Temperature dependence of the electron paramagnetic resonance intensity of whole coals. In: Botto RE, Sanada Y (eds) Magnetic resonance of carbonaceous solids, vol 299 (Advances in Chemistry Series). American Chemical Society, Washington, DC

    Google Scholar 

  69. Barklie RC, Collins M, Silva SRP (2000) EPR linewidth variation, spin relaxation times, and exchange in amorphous hydrogenated carbon. Phys Rev B 61:3546–3554

    Article  CAS  Google Scholar 

  70. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R37:129–281

    Article  CAS  Google Scholar 

  71. Astashkin AV, Schweiger A (1990) Electron-spin transient nutation: a new approach to simplify the interpretation of ESR spectra. Chem Phys Lett 174:595–602

    Article  CAS  Google Scholar 

  72. Solomon I (1959) Rotary spin echoes. Phys Rev Lett 2:301–302

    Article  CAS  Google Scholar 

  73. Stoll S, Jeschke G, Willer M, Schweiger A (1998) Nutation frequency correlated EPR spectroscopy: the PEANUT experiment. J Magn Reson 130:86–96

    Article  CAS  Google Scholar 

  74. Delpoux O, Gourier D, Vezin H, Binet L, Derenne S, Robert F (2011) Biradical character of D-rich carriers in the insoluble organic matter of carbonaceous meteorites: a relic of the protoplanetary disk chemistry. Geochim Cosmochim Acta 75:326–336

    Article  CAS  Google Scholar 

  75. Binet L, Gourier D, Derenne S, Robert F, Ciofini I (2004) Occurrence of abundant diradicaloid moieties in the insoluble organic matter from the Orgueil and Murchison meteorites: a fingerprint of its extraterrestrial origin? Geochim Cosmochim Acta 68:881–891

    Article  CAS  Google Scholar 

  76. Jung Y, Head-Gordon M (2003) How diradicaloid is a stable diradical? Chem Phys Chem 4:522–525

    CAS  Google Scholar 

  77. Geim AK, Novoselov KS (2007) The rise of grapheme. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  78. Fernandez-Rossier J, Palacios JJ (2007) Magnetism in grapheme nanoislands. Phys Rev Lett 99(177204):1–4

    Google Scholar 

  79. Philpott MR, Kawazoe Y (2009) Bonding and magnetism in nanosized grapheme molecules: Singletstates of zigzag edged hexangulenes C6mH6m (m = 2,3, …,10). J Chem Phys 131(214706):1–12

    Google Scholar 

  80. Enoki T, Takai K (2009) The edge state of nanographene and the magnetism of the edge-state spins. Solid State Comm 149:1144–1150

    Article  CAS  Google Scholar 

  81. Wang J, Zubarev DY, Philpott MR, Vukovic S, Lester WA, Cui T, Kawazoe Y (2010) Onset of diradical character in small nanosized grapheme patches. Phys Chem Chem Phys 12:9839–9844

    Article  CAS  Google Scholar 

  82. Philpott MR, Kawazoe Y (2011) Triplet states of zigzag edged hexagonal grapheme molecules C6m2H6m (m = 1,2,3,…,10) and carbon based magnetism. J Chem Phys 134(124706):1–9

    Google Scholar 

  83. Pham BQ, Truong TN (2012) Electronic spin transitions in finite-size graphene. Chem Phys Lett 535:75–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Gourier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing

About this chapter

Cite this chapter

Gourier, D., Binet, L., Vezin, H. (2014). EPR of Primitive Organic Matter: A Tool for Astrobiology. In: Lund, A., Shiotani, M. (eds) Applications of EPR in Radiation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-09216-4_15

Download citation

Publish with us

Policies and ethics