Advertisement

Robust Stabilization of Time-Delay Systems

  • Alexander Poznyak
  • Andrey Polyakov
  • Vadim Azhmyakov
Chapter
Part of the Systems & Control: Foundations & Applications book series

Abstract

In this chapter, we consider the class of uncertain time-delay affine-controlled systems in which a delay is admitted in state variables, and we show that the attractive ellipsoid method allows us to create a feedback that provides the convergence of any state trajectory of the controlled system from a given class to an ellipsoid whose “size” depends on the parameters of the applied feedback. Finally, we present a method for numerical calculation of these parameters that provides the “smallest” zone convergence for controlled trajectories.

Keywords

Input time-delay Robust control Unknown delay 

Bibliography

  1. Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869–879.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bekiaris-Liberis, N., & Krstic, M. (2012). Compensation of time-varying input and state delays for nonlinear systems. Journal of Dynamic Systems, Measurement, and Control, 134(1), paper 011009.Google Scholar
  3. Boyd, S., Ghaoui, E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia: SIAM.CrossRefzbMATHGoogle Scholar
  4. Choi, H.-L., & Lim, J.-T. (2010). Output feedback regulation of a chain of integrators with an unknown time-varying delay in the input. IEEE Transactions on Automatic Control, 55(1), 263–268.MathSciNetCrossRefGoogle Scholar
  5. Choi, S.-B., & Hedrick, J. (1996). Robust throttle control of automotive engines. ASME Journal of Dynamic Systems, Measurement and Control, 118, 92–98.CrossRefzbMATHGoogle Scholar
  6. Davila, J., & Poznyak, A. (2011). Dynamic sliding mode control design using attracting ellipsoid method. Automatica, 47, 1467–1472.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Edwards, C., & Spurgeon, S. (1998). Sliding mode control: Theory and applications. London, UK: Taylor & Francis.Google Scholar
  8. Flower, A. C., & Mackey, M. C. (2002). Relaxation oscillations in a class of delay differential equations. SIAM Journal of Applied Mathematics, 63, 299–323.CrossRefGoogle Scholar
  9. Fridman, E. (2006). Descriptor discretized Lyapunov functional method: analysis and design. IEEE Transactions on Automatic Control, 51, 890–897.MathSciNetCrossRefGoogle Scholar
  10. Fridman, E., Seuret, A., & Richard, J.-P. (2004). Robust sampled-data stabilization of linear systems: An input delay approach. Automatica, 40(8), 1441–1446.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Fridman, L., Acosta, P., & Polyakov, A. (2001). Robust eigenvalue assignment for uncertain delay control systems. In IFAC Workshop Time Delay Systems (pp. 239–244), Santa Fe, USA.Google Scholar
  12. Gonzalez-Garcia, S., Polyakov, A., & Poznyak, A. (2011). Using the method of invariant ellipsoids for linear robust output stabilization of spacecraft. Automation and Remote Control, 72, 540–555.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Han, X., Fridman, E., & Spurgeon, S. (2012). Sliding mode control in the presence of input delay: A singular perturbation approach. Automatica, 48(8), 1904–1912.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Krstic, M. (2009). Delay compensation for nonlinear, adaptive, and PDE systems. Boston: Birkhäuser.CrossRefzbMATHGoogle Scholar
  15. Kruszewski, A., Jiang, W. J., Fridman, E., Richard, J.-P., & Toguyeni, A. (2012). A switched system approach to exponential stabilization through communication network. IEEE Transactions on Control Systems Technology, 20(4), 887–900.CrossRefGoogle Scholar
  16. Kurzhanski, A., & Valyi, I. (1997). Ellipsoidal calculus for estimation and control. Boston, MA: Birkhäuser.CrossRefzbMATHGoogle Scholar
  17. Li, X., & Yurkovitch, S. (1999). Sliding mode control of systems with delayed states and controls. In Variable structure systems, sliding mode and nonlinear control (pp. 93–108). Berlin: Springer.CrossRefGoogle Scholar
  18. Loukianov, A. G., Espinosa-Guerra, O., Castillo-Toledo, B., & Utkin, V. A. (2006). Integral sliding mode control for systems with time delay. In International Workshop on Variable Structure Systems (pp. 256–261), Alghero, Italy.Google Scholar
  19. Malek-Zaverei, M., & Jamshidi, M. (1987). Time delay systems analysis, optimization and applications, systems and control. Amsterdam, Netherlands: North Holland.Google Scholar
  20. Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delay. IEEE Transactions on Automatic Control, 24, 541–553.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Mazenc, F., Niculescu, S., & Krstic, M. (2012). Lyapunov-Krasovskii functionals and application to input delay compensation for linear time-invariant systems. Automatica, 48(7), 1317–1323.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Nazin, S., Polyak, B., & Topunov, M. (2007). Rejection of bounded exogenous disturbances by the method of invariant ellipsoids. Automation and Remote Control, 68, 467–486.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Polyak, B. T., & Topunov, M. V. (2008) Suppression of bounded exogenous disturbances: Output feedback. Automation and Remote Control, 69, 801–818. ellipsoids/polyak2008.pdf.Google Scholar
  24. Polyakov, A. (2010). On practical stabilization of the systems with relay delay control. Automation and Remote Control, 71(11), 2331–2344.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Polyakov, A. (2012). Minimization of disturbances effects in time delay predictor-based sliding mode control systems. Journal of the Franklin Institute, 349(4), 1380–1396.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Polyakov, A., Efimov, D., Perruquetti, W., & Richard, J.-P. (2013). Output Stabilization of Time- Varying Input Delay Systems Using Interval Observation Technique, Automatica, 49(11), 3402–3410.MathSciNetCrossRefGoogle Scholar
  27. Polyakov, A., & Poznyak, A. (2011). Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control. Automatica, 47, 1450–1454.MathSciNetCrossRefzbMATHGoogle Scholar
  28. Poznyak, A. (2008). Advanced mathematical tools for automatic control engineers: Deterministic techniques. Amsterdam: Elsevier.Google Scholar
  29. Richard, J.-P. (2003). Time-delay systems: An overview of some recent advances and open problems. Automatica, 39(10), 1667–1694.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Roh, Y. H., & Oh, J. H. (1999). Robust stabilization of uncertain input delay systems by sliding mode control with delay compensation. Automatica, 35, 1861–1865.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Seuret, A., Floquet, T., Richard, J.-P., & Spurgeon, S. K. (2007). A sliding mode observer for linear systems with unknown time varying delay. In American Control Conference (pp. 4558–4563).Google Scholar
  32. Stephanopoulos, G. (1984). Chemical process control: An introduction to theory and practice. New York: Prentice-Hall.Google Scholar
  33. Usoro, P., Schweppe, F., Gould, L., & Wormley, D. (1982). A Lagrange approach to set-theoretic control synthesis. IEEE Transactions on Automatic Control, 27(2), 393–399.CrossRefzbMATHGoogle Scholar
  34. Utkin, V. (1992). Sliding modes in control optimization. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  35. Utkin, V., Guldner, J., & Shi, J. (1999). Sliding modes in electromechanical systems. London: Taylor & Francis.Google Scholar
  36. Watanabe, K. (1986). Finite spectrum assignment and observer for multivariable systems with commensurate delays. IEEE Transactions on Automatic Control, 31(6), 543–550.CrossRefzbMATHGoogle Scholar
  37. Yefremov, M., Polyakov, A., & Strygin, V. (2006). An algorithm for the active stabilization of a spacecraft with viscoelastic elements under conditions of uncertainty. Journal of Applied Mathematics and Mechanics, 70, 723–733.MathSciNetCrossRefGoogle Scholar
  38. Zheng, G., Barbot, J.-P., Boutat, D., Floquet, T., & Richard, J.-P. (2011). On observability of nonlinear time-delay systems with unknown inputs. IEEE Transactions on Automatic Control, 56(8), 973–1978.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexander Poznyak
    • 1
  • Andrey Polyakov
    • 2
  • Vadim Azhmyakov
    • 3
  1. 1.Automatic Control DepartmentCentro de Investigacion y Estudios AvanzadosMéxicoMexico
  2. 2.Non-AINRIA-LNEVilleneuve d’AscqFrance
  3. 3.Faculty of Electronic and Biomedical EngineeringUniversity of Antonio NariñoNeivaColombia

Personalised recommendations