Advertisement

Robust Control of Implicit Systems

  • Alexander Poznyak
  • Andrey Polyakov
  • Vadim Azhmyakov
Chapter
Part of the Systems & Control: Foundations & Applications book series (SCFA)

Abstract

This chapter deals with a new approach to robust control design for a class of nonlinearly affine control systems. The dynamic models under consideration are described by implicit differential equations in the presence of additive bounded uncertainties. The proposed robust feedback design procedure is based on an extended version of the classical invariant ellipsoid technique. In this book, this extension is called the attractive ellipsoid method. The stability/robustness analysis of the resulting closed-loop system involves a modified descriptor approach associated with the usual Lyapunov-type methodology. The theoretical schemes elaborated in our contribution are finally illustrated by a simple computational example.

Keywords

Implicit systems Sampled-data systems Attractive ellipsoids 

Bibliography

  1. Basin, M., & Calderon-Alvarez, D. (2010). Optimal filtering over linear observations with unknown parameters. Journal of the Franklin Institute, 347, 988–1000.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Basin, M., Rodriguez-Gonzalez, J., & Fridman, L. (2007). Optimal and robust control for linear state-delay systems. Journal of the Franklin Institute, 344, 830–845.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Boyd, S., Ghaoui, E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia: SIAM.CrossRefzbMATHGoogle Scholar
  4. Chistyakov, V. (2007). Nonlocal theorems on existence of solutions of differential-algebraic equations of index 1. Russian Mathematics, 51, 71–76.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Dahleh, M., Pearson, J., & Boyd, J. (1988). Optimal rejection of persistent disturbances, robust stability, and mixed sensitivity minimization. IEEE Transactions on Automatic Control, 33, 722–731.CrossRefzbMATHGoogle Scholar
  6. Dai, L. (1989). Singular control systems. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  7. Fridman, E. (2006). Descriptor discretized Lyapunov functional method: analysis and design. IEEE Transactions on Automatic Control, 51, 890–897.MathSciNetCrossRefGoogle Scholar
  8. Fridman, E. (2010). A refined input delay approach to sampled-data control. Automatica, 46, 421–427.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Haddad, W., & Chellaboina, V. (2008). Nonlinear Dynamical Systems and Control. Princeton: Princeton University Press.zbMATHGoogle Scholar
  10. Karafyllis, I., & Jiang, Z.-P. (2011). Stability and stabilization of nonlinear systems. London: Springer.CrossRefzbMATHGoogle Scholar
  11. Khalil, H. (2002). Nonlinear systems. Upper Saddle River: Prentice Hall.zbMATHGoogle Scholar
  12. Kunkel, P., & Mehrmann, V. L. (2006). Differential-algebraic equations: analysis and numerical solutions. Switzerland: EMS Publishing House.CrossRefGoogle Scholar
  13. Kurzhanski, A., & Veliov, V. (1994). Modeling techniques and uncertain systems. New York: Birkhäuser.Google Scholar
  14. Masubuchi, I., Kamitane, Y., Ohara, A., & Suda, N. (1997). h control for descriptor systems: A matrix inequalities approach. Automatica, 33(4), 669–673.Google Scholar
  15. Mera, M., Poznyak, A., & Azhmyakov, V. (2011). On the robust control design for a class of continuous-time dynamical systems with a sample-data output. In Proceedings of the IFAC World Congress.Google Scholar
  16. Michel, A., Hou, L., & Liu, D. (2007). Stability of dynamical systems. New York: Birkhäuser.Google Scholar
  17. Polyak, B. T., & Topunov, M. V. (2008) Suppression of bounded exogenous disturbances: Output feedback. Automation and Remote Control, 69, 801–818. ellipsoids/polyak2008.pdf.Google Scholar
  18. Poznyak, A., Azhmyakov, V., & Mera, M. (2011). Practical output feedback stabilisation for a class of continuous-time dynamic systems under sample-data outputs. International Journal of Control, 84, 1408–1416.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Reis, T., & Stykel, T. (2011). Lyapunov balancing for passivity-preserving model reduction of RC circuits. SIAM Journal of Applied Dynamic Systems, 10, 1–34.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Rheinbolt, W. (1981). On the existence and uniqueness of solutions of nonlinear semi-implicit differential-algebraic equations. Nonlinear analysis. Theory, Methods and Applications, 16, 642–661.Google Scholar
  21. Rheinbolt, W. (1988). Differential-algebraic systems as differential equations on manifolds. Mathematics of Computation, 43, 473–482.CrossRefGoogle Scholar
  22. Takaba, K. (2002). Stability analysis of interconnected implicit systems based on passivity. In Proceedings of the IFAC 15th World Congress, Barcelona, Spain.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexander Poznyak
    • 1
  • Andrey Polyakov
    • 2
  • Vadim Azhmyakov
    • 3
  1. 1.Automatic Control DepartmentCentro de Investigacion y Estudios AvanzadosMéxicoMexico
  2. 2.Non-AINRIA-LNEVilleneuve d’AscqFrance
  3. 3.Faculty of Electronic and Biomedical EngineeringUniversity of Antonio NariñoNeivaColombia

Personalised recommendations