Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 393 Accesses

Abstract

In its simplest definition, a suspension is a mixture of macroscopic, undissolved, hard particles in a liquid. From paints to oils to beauty products, suspensions surround us in our everyday lives. They also exhibit rich and interesting phenomena at the forefront of physics and materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.S. Lee, E.D. Wetzel, N.J. Wagner, The ballistic impact characteristics of kevlar\(^{\textregistered }\) woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 38(13), 2825–2833 (2003)

    Article  ADS  Google Scholar 

  2. P. Beiersdorfer, D. Layne, E.W. Magee, J.I. Katz, Viscoelastic suppression of gravity-driven counterflow instability. Phys. Rev. Lett. 106(5), 058301 (2011)

    Article  ADS  Google Scholar 

  3. W.H. Boersma, J. Laven, H.N. Stein, Shear thickening (dilatancy) in concentrated dispersions. AIChE J. 36(3), 321–332 (1990)

    Article  Google Scholar 

  4. T.N. Phung, J.F. Brady, G. Bossis, Stokesian dynamics simulation of brownian suspensions. J. Fluid Mech. 313, 181–207 (1996)

    Google Scholar 

  5. R.L. Hoffman, Explanations for the cause of shear thickening in concentrated colloidal suspensions. J. Rheol. 42, 111–124 (1998)

    Article  ADS  Google Scholar 

  6. Y.S. Lee, N.J. Wagner, Dynamic properties of shear thickening colloidal suspensions. Rheol. Acta 42(3), 199–208 (2003)

    Google Scholar 

  7. A. Fall, N. Huang, F. Bertrand, G. Ovarlez, D. Bonn, Shear thickening of cornstarch suspensions as a reentrant jamming transition. Phys. Rev. Lett. 100, 018301 (2008)

    Article  ADS  Google Scholar 

  8. E. Brown, H. Jaeger, Dynamic jamming point for shear thickening suspensions. Phys. Rev. Lett. 103(8), 086001 (2009)

    Article  ADS  Google Scholar 

  9. N.J. Wagner, J.F. Brady, Shear thickening in colloidal dispersions. Phys. Today 62(10), 27–32 (2009)

    Article  Google Scholar 

  10. E. Brown, N.A. Forman, C.S. Orellana, H. Zhang, B.W. Maynor, D.E. Betts, J.M. Desimone, H.M. Jaeger, Generality of shear thickening in dense suspensions. Nat. Mater. 9(3), 220–224 (2010)

    ADS  Google Scholar 

  11. X. Cheng, J.H. McCoy, J.N. Israelachvili, I. Cohen, Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333(6047), 1276–1279 (2011)

    Article  ADS  Google Scholar 

  12. A. Fall, F. Bertrand, G. Ovarlez, D. Bonn, Shear thickening of cornstarch suspensions. J. Rheol. 56, 575–592 (2012)

    Article  ADS  Google Scholar 

  13. R.L. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions. ii. theory and experimental tests. J. Colloid. Interf. Sci. 46(3), 491–506 (1974)

    Article  Google Scholar 

  14. E.A. Collins, D.J. Hoffmann, P.L. Soni, Rheology of pvc dispersions. i. effect of particle size and particle size distribution. J. Colloid. Interf. Sci. 71(1), 21–29 (1979)

    Article  Google Scholar 

  15. R.L. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions iii. necessary conditions for their occurrence in viscometric flows. Adv. Colloid Interfac. 17(1), 161–184 (1982)

    Article  Google Scholar 

  16. D.R. Foss, J.F. Brady, Structure, diffusion and rheology of brownian suspensions by stokesian dynamics simulation. J. Fluid Mech. 407(1), 167–200 (2000)

    Article  ADS  MATH  Google Scholar 

  17. J.R. Melrose, R.C. Ball, Continuous shear thickening transitions in model concentrated colloids: The role of interparticle forces. J. Rheol. 48, 937–961 (2004)

    Article  ADS  Google Scholar 

  18. B.J. Maranzano, N.J. Wagner, Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J. Chem. Phys. 117, 10291–10303 (2002)

    Article  ADS  Google Scholar 

  19. D.P. Kalman, N.J. Wagner, Microstructure of shear-thickening concentrated suspensions determined by flow-usans. Rheol. Acta 48(8), 897–908 (2009)

    Article  Google Scholar 

  20. E. Brown, H.M. Jaeger, The role of dilation and confining stresses in shear thickening of dense suspensions. J. Rheol. 56(4), 875–924 (2012)

    Article  ADS  Google Scholar 

  21. L.M. Hocking, The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres. J. Eng. Math. 7(3), 207–221 (1973)

    Article  MATH  Google Scholar 

  22. R. Seto, R. Mari, J.F. Morris, M.M. Denn, Discontinuous shear thickening of frictional hard-sphere suspensions. arXiv.org, cond-mat.soft, June 2013

    Google Scholar 

  23. N.A. Frankel, A. Acrivos, On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci. 22(6), 847–853 (1967)

    Article  Google Scholar 

  24. J. Van Alsten, S. Granick, Molecular tribometry of ultrathin liquid films. Phys. Rev. Lett. 61, 2570–2573 (1988)

    Article  ADS  Google Scholar 

  25. E.E. Bischoff White, M. Chellamuthu, J.P. Rothstein, Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol. Acta 49(2), 119–129 (2010)

    Article  Google Scholar 

  26. C.S. Orellana, J. He, H.M. Jaeger, Electrorheological response of dense strontium titanyl oxalate suspensions. Soft Matter 7(18), 8023–8029 (2011)

    Article  ADS  Google Scholar 

  27. A.S. Lim, S.L. Lopatnikov, N.J. Wagner, J.W. Gillespie, Investigating the transient response of a shear thickening fluid using the split hopkinson pressure bar technique. Rheol. Acta 49(8), 879–890 (2010)

    Article  Google Scholar 

  28. W. Jiang, X. Gong, S. Xuan, W. Jiang, F. Ye, X. Li, T. Liu, Stress pulse attenuation in shear thickening fluid. Appl. Phys. Lett. 102(10), 101901 (2013)

    Article  ADS  Google Scholar 

  29. B. Liu, M. Shelley, J. Zhang, Focused force transmission through an aqueous suspension of granules. Phys. Rev. Lett. 105(18), 188301 (2010)

    Article  ADS  Google Scholar 

  30. S. von Kann, J.H. Snoeijer, D. Lohse, D. van der Meer, Nonmonotonic settling of a sphere in a cornstarch suspension. Phys. Rev. E 84(6), 060401 (2011)

    Article  Google Scholar 

  31. S.R. Waitukaitis, H.M. Jaeger, Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 487(7406), 205–209 (2012)

    Article  ADS  Google Scholar 

  32. S.R. Waitukaitis, L.K. Roth, V. Vitelli, H.M. Jaeger, Dynamic jamming fronts. EPL (Europhysics Letters) 102(4), 44001 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott R. Waitukaitis .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Waitukaitis, S.R. (2015). Introduction. In: Impact-Activated Solidification of Cornstarch and Water Suspensions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-09183-9_1

Download citation

Publish with us

Policies and ethics