Providing Crowd-Sourced and Real-Time Media Services through an NDN-Based Platform

  • G. PiroEmail author
  • V. Ciancaglini
  • R. Loti
  • L. A. Grieco
  • L. Liquori
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 4)


The diffusion of social networks and broadband technologies is letting emerge large online communities of people who stay always in touch with each other and exchange messages, thoughts, photos, videos, files, and any other type of contents. At the same time, due to the introduction of crowd-sourcing strategies, according to which services and contents can be obtained by soliciting contributions from a group of users, the amount of data generated and exchanged within a social community may experience a radical increment never seen before. In this context, it becomes essential to guarantee resource scalability and load balancing to support real-time media delivery. To this end, the present book chapter aims at investigating the design of a network architecture, based on the emerging Named Data Networking (NDN) paradigm, providing crowdsourced real-time media contents. Such an architecture is composed by four different entities: a very large group of heterogeneous devices that produce media contents to be shared, an equally large group of users interested in them, a distributed Event Management System that creates events and handles the social community, and an NDN communication infrastructure able to efficiently manage users requests and distribute multimedia contents. To demonstrate the effectiveness of the proposed approach, we evaluate its performance through a simulation campaign based on real-world topologies.


Data Packet Multimedia Content Media Content Online Social Network Streaming Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cisco: Cisco visual networking index: Forecast and methodology, 2012–2017. White Paper (May 2013)Google Scholar
  2. 2.
    Chatzimilioudis, G., Konstantinidis, A., Laoudias, C., Zeinalipour-Yazti, D.: Crowdsourcing with smartphones. IEEE Internet Computing 16(5), 36–44 (2012)CrossRefGoogle Scholar
  3. 3.
    Matsubara, D., Egawa, T., Nishinaga, N., Kafle, V., Shin, M.K., Galis, A.: Toward future networks: A viewpoint from ITU-T. IEEE Communication Magazine 51(3), 112–118 (2013)CrossRefGoogle Scholar
  4. 4.
    Koponen, T., Chawla, M., Chun, B.G., Ermolinskiy, A., Kim, K.H., Shenker, S., Stoica, I.: A data-oriented (and beyond) network architecture. In: Proc. of the ACM Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM), Kyoto, Japan (2007)Google Scholar
  5. 5.
    Fotiou, N., Nikander, P., Trossen, D., Polyzos, G.C.: Developing information networking further: From PSIRP to PURSUIT. In: Tomkos, I., Bouras, C.J., Ellinas, G., Demestichas, P., Sinha, P. (eds.) Broadnets 2010. LNCS, SITE, vol. 66, pp. 1–13. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Dannewitz, C., Kutscher, D., Ohlman, B., Farrell, S., Ahlgren, B., Karl, H.: Network of Information (NetInf), An information-centric networking architecture. Computer Communications 36(7), 721–735 (2013)CrossRefGoogle Scholar
  7. 7.
    Melazzi, N., Salsano, S., Detti, A., Tropea, G., Chiariglione, L., Difino, A., Anadiotis, A., Mousas, A., Venieris, I., Patrikakis, C.: Publish/subscribe over information centric networks: A Standardized approach in CONVERGENCE. In: Proc. of Future Network Mobile Summit (FutureNetw), Berlin, Germany (July 2012)Google Scholar
  8. 8.
    NDN: Project website (2011), (accessed: July 08, 2013)
  9. 9.
    Xylomenos, G., Ververidis, C., Siris, V., Fotiou, N., Tsilopoulos, C., Vasilakos, X., Katsaros, K., Polyzos, G.: A Survey of Information-Centric Networking Research. IEEE Communications Surveys Tutorials PP(99), 1–26 (2013)Google Scholar
  10. 10.
    Bari, M., Chowdhury, S., Ahmed, R., Boutaba, R., Mathieu, B.: A survey of naming and routing in information-centric networks. IEEE Communications Magazine 50(12), 44–53 (2012)CrossRefGoogle Scholar
  11. 11.
    Rossini, G., Rossi, D.: Large scale simulation of ccn networks. In: Algotel (2012)Google Scholar
  12. 12.
    Myspace, (accessed: January 7, 2014)
  13. 13.
    Facebook, (accessed: January 7, 2014)
  14. 14.
    Weibo, S.: (accessed: January 7, 2014)
  15. 15.
    Orkut, (accessed: January 7, 2014)
  16. 16.
    Hi5, (accessed: January 7, 2014)
  17. 17.
    NK, (accessed: January 7, 2014)
  18. 18.
    VKontakte, (accessed: January 7, 2014)
  19. 19.
    Twitter, (accessed: January 7, 2014)
  20. 20.
    Thumblr, (accessed: January 7, 2014)
  21. 21., (accessed: January 7, 2014)
  22. 22.
    Vine, (accessed: January 7, 2014)
  23. 23.
    Flickr, (accessed: January 7, 2014)
  24. 24.
    Spotify, (accessed: January 7, 2014)
  25. 25.
    Linkedin, (accessed: January 7, 2014)
  26. 26.
    Ceballos, M.R., Gorricho, J.L.: P2P file sharing analysis for a better performance. In: Proc. of ACM International Conference on Software Engineering (2006)Google Scholar
  27. 27.
    Liu, B., Cui, Y., Lu, Y., Xue, Y.: Locality-awareness in bittorrent-like P2P applications. IEEE Transactions on Multimedia 3(11) (April 2009)Google Scholar
  28. 28.
    Li, J.: Peer-to-Peer multimedia applications. In: Proc. of ACM International Conference on Multimedia (2006)Google Scholar
  29. 29.
    Liu, J., Rao, S.G., Li, B., Zhang, H.: Opportunities and Challenges of Peer-to-Peer Internet Video Broadcast. In: Proc. of IEEE, Special Issue on Recent Advances in Distributed Multimedia Communications (2008)Google Scholar
  30. 30.
    Xiao, X., Shi, Y., Gao, Y.: On Optimal Scheduling for Layered Video Streaming in Heterogeneous Peer-to-Peer Networks. In: Proc. of ACM International Conference on Multimedia (2008)Google Scholar
  31. 31.
    da Silva, A., Leonardi, E., Mellia, M., Meo, M.: A Bandwidth-Aware Scheduling Strategy for P2P-TV Systems. In: Proc. of IEEE International Conference on Peer-to-Peer Computing, pp. 279–288 (2008)Google Scholar
  32. 32.
    Ciullo, D., Garcia, M.A., Horvath, A., Leonardi, E., Mellia, M., Rossi, D., Telek, M., Veglia, P.: Network awareness of P2P live streaming applications: a measurement study. IEEE Transaction on Multimedia (12) (2010)Google Scholar
  33. 33.
    Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.: Networking named content. In: ACM CoNEXT 2009 (2009)Google Scholar
  34. 34.
    Zhang, L., Estrin, D., Burke, J., Jacobson, V., Thornot, J., Smatters, D., Zhang, B., Tsudik, G., Krioukov, D., Massey, D., Papadopulos, C., Abdelzaher, T., Wang, L., Crowley, P., Yeh, E.: Named data networking (NDN) project. PARC Technical Report TR-2010-02 (October 2010)Google Scholar
  35. 35.
    Lin, W.S., Zhao, H.V., Liu, K.R.: Incentive cooperation strategies for peer-to-peer live multimedia streaming social networks. IEEE Transactions on Multimedia 11(3), 396–412 (2009)CrossRefGoogle Scholar
  36. 36.
    Cheng, X., Liu, J.: Nettube: Exploring social networks for peer-to-peer short video sharing. In: Proc. of IEEE INFOCOM 2009, pp. 1152–1160. IEEE (2009)Google Scholar
  37. 37.
    Wang, X., Chen, M., Kwon, T., Yang, L., Leung, V.: Ames-cloud: A framework of adaptive mobile video streaming and efficient social video sharing in the clouds. IEEE Transactions on Multimedia 15(4), 811–820 (2013)CrossRefGoogle Scholar
  38. 38.
    Wang, Z., Wu, C., Sun, L., Yang, S.: Peer-assisted social media streaming with social reciprocity. IEEE Transactions on Network and Service Management 10(1), 84–94 (2013)CrossRefGoogle Scholar
  39. 39.
    Hoßfeld, T., Seufert, M., Hirth, M., Zinner, T., Tran-Gia, P., Schatz, R.: Quantification of YouTube QoE via crowdsourcing. In: Proc. of IEEE International Symposium on Multimedia (ISM), pp. 494–499 (2011)Google Scholar
  40. 40.
    Recursive fact-finding: A streaming approach to truth estimation in crowdsourcing applications, pp. 530–539 (2013)Google Scholar
  41. 41.
    Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.W.: A measurement study of a large-scale P2P IPTV system. IEEE Transactions on Multimedia 9(8), 1672–1687 (2007)CrossRefGoogle Scholar
  42. 42.
    Magharei, N., Rejaie, R.: Prime: Peer-to-peer receiver-driven mesh-based streaming. IEEE/ACM Transactions on Networking (TON) 17(4), 1052–1065 (2009)CrossRefGoogle Scholar
  43. 43.
    Jimenez, R.: Distributed Peer Discovery in Large-Scale P2P Streaming Systems: Addressing Practical Problems of P2P Deployments on the Open Internet. PhD thesis, KTH, Network Systems Laboratory (NS Lab), QC 20131203 (2013)Google Scholar
  44. 44.
    Grieco, L.A.: Emerging topics: special issue on multimedia services in information centric networks (guest editorial). IEEE COMSOC MMTC E-letter, 4–5 (July 2013)Google Scholar
  45. 45.
    Piro, G., Grieco, L.A., Boggia, G., Chatzimisios, P.: Information-centric networking and multimedia services: present and future challenges. ETT, Transactions on Emerging Telecommunications Technologies (2013) (to be published)Google Scholar
  46. 46.
    Jacobson, V., Smetters, D.K., Briggs, N.H., Plass, M.F., Stewart, P., Thornton, J.D., Braynard, R.L.: Voccn: voice-over content-centric networks. In: ACM ReArch 2009 (2009)Google Scholar
  47. 47.
    Zhu, Z., Wang, S., Yang, X., Jacobson, V., Zhang, L.: ACT: audio conference tool over named data networking. In: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking, pp. 68–73. ACM, New York (2011)CrossRefGoogle Scholar
  48. 48.
    Li, H., Li, Y., Lin, T., Zhao, Z., Tang, H., Zhang, X.: MERTS: A more efficient real-time traffic support scheme for Content Centric Networking. In: Proc. in IEEE Int. Conf. on Computer Sciences and Convergence Information Technology, ICCIT, pp. 528–533 (2011)Google Scholar
  49. 49.
    Han, L., Kang, S.S., Kim, H., In, H.: Adaptive retransmission scheme for video streaming over content-centric wireless networks. IEEE Communications Letters 17(6), 1292–1295 (2013)CrossRefGoogle Scholar
  50. 50.
    Park, J., Kim, J., Jang, M.W., Lee, B.J.: Time-based interest protocol for real-time content streaming in content-centric networking (CCN). In: Proc. of IEEE Int. Conf. on Consumer Electronics, ICCE, pp. 512–513 (2013)Google Scholar
  51. 51.
    Kulinsky, D., Burke, J., Zhang, L.: Video streaming over named data networking. IEEE COMSOC MMTC E-letter, 6–9 (July 2013)Google Scholar
  52. 52.
    Pallis, G., Vakali, A.: Insight and perspectives for content delivery networks. ACM Communication Magazine, 101–106 (January 2006)Google Scholar
  53. 53.
    Vakali, A., Pallis, G.: Content delivery networks: status and trends. IEEE Internet Computing 7(6), 68–74 (2003)CrossRefGoogle Scholar
  54. 54.
    Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B.: A survey of information-centric networking. IEEE Communications Magazine 50(7), 26–36 (2012)CrossRefGoogle Scholar
  55. 55.
    Melazzi, N.B., Chiariglione, L.: The Potential of Information Centric Networking in Two Illustrative Use Scenarios: Mobile Video Delivery and Network Management in Disaster Situations. IEEE COMSOC MMTC E-letter, 17–20 (July 2013)Google Scholar
  56. 56.
    Ciancaglini, V., Piro, G., Loti, R., Grieco, L.A., Liquori, L.: CCN-TV: a data-centric approach to real-time video services. In: in Proc. of IEEE International Conference on Advanced Information Networking and Applications, AINA, Barcelona, Spain (March 2013)Google Scholar
  57. 57.
    Piro, G., Ciancaglini, V.: Enabling real-time TV services in CCN networks. IEEE COMSOC MMTC E-letter, 17–20 (July 2013)Google Scholar
  58. 58.
    Piro, G., Cianci, I., Grieco, L.A., Boggia, G., Camarda, P.: Information centric services in smart cities. Elsevier Journal of Systems and Software 88, 169–188 (2014)CrossRefGoogle Scholar
  59. 59.
    Omnet++, (accessed: January 7, 2014)
  60. 60.
    Wiegand, T., Sullivan, G., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Transaction on Circuits and Systems for Video Technology 13(7), 560–576 (2003)CrossRefGoogle Scholar
  61. 61.
    Chiocchetti, R., Rossi, D., Rossini, G., Carofiglio, G., Perino, D.: Exploit the known or explore the unknown?: hamlet-like doubts in ICN. In: Proc. of ACM ICN Workshop on Information-Centric Networking, pp. 7–12 (2012)Google Scholar
  62. 62.
    Rossi, D., Rossini, G.: Caching performance of content centric networks under multi-path routing (and more). In: Technical report, Telecom ParisTech.s (2011)Google Scholar
  63. 63.
    Piro, G., Grieco, L., Boggia, G., Fortuna, R., Camarda, P.: Two-level Downlink Scheduling for Real-Time Multimedia Services in LTE Networks. IEEE Transaction on Multimedia 13, 1052–1065 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • G. Piro
    • 1
    Email author
  • V. Ciancaglini
    • 2
  • R. Loti
    • 2
  • L. A. Grieco
    • 1
  • L. Liquori
    • 2
  1. 1.DEI - Politecnico di BariBariItaly
  2. 2.INRIASophia AntipolisFrance

Personalised recommendations