A Socialized System for Enabling the Extraction of Potential Values from Natural and Social Sensing

  • Ryoichi ShinkumaEmail author
  • Yasuharu Sawada
  • Yusuke Omori
  • Kazuhiro Yamaguchi
  • Hiroyuki Kasai
  • Tatsuro Takahashi
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 4)


This chapter tackles two problems we face when extracting values from sensing data: 1) it is hard for humans to understand raw/unprocessed sensing data and 2) it is inefficient in terms of management costs to keep all sensing data ‘usable’. This chapter also discusses a solution, i.e., the socialized system, which encodes the characteristics of sensing data in relational graphs so as to extract values that originally contained the sensing data from the relational graphs. The system model, the encoding/decoding logic, and the real-dataset examples are presented. We also propose a content distribution paradigm built on the socialized system that is called SocialCast. SocialCast can achieve load balancing, low-retrieval latency, and privacy while distributing content using relational metrics produced from the relational graph of the socialized system. We did a simulation and present the results to demonstrate the effectiveness of this approach.


Network Graph Cache Size Physical Network Physical Link Cache Replacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizawa, K., Tancharoen, D., Kawasaki, S., Yamasaki, T.: Efficient retrieval of life log based on context and content. In: Proceedings of the the 1st ACM Workshop on Continuous Archival and Retrieval of Personal Experiences (CARPE 2004), pp. 22–31 (2004)Google Scholar
  2. 2.
    Laurila, J., Gatica-Perez, D., Aad, I., Blom, J., Bornet, O., Dousse, D.O., Eberle, J., Miettinen, M.: The mobile data challenge: Big data for mobile computing research. In: Proceedings of Mobile Data Challenge by Nokia Workshop (2012)Google Scholar
  3. 3.
    LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big Data, Analytics and the Path From Insights to Value. MIT Sloan, Management Review 52(2) (2011)Google Scholar
  4. 4.
    Lymberopoulos, D., Bamis, A., Savvides, A.: Extracting spatiotemporal human activity patterns in assisted living using a home sensor network. In: Proceedings of the 1st International Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2008), Article No. 29 (2008)Google Scholar
  5. 5.
    Lynch, C.: Big data: How do your data grow? Nature 455, 28–29 (2008)CrossRefGoogle Scholar
  6. 6.
    Shinkuma, R., Kasai, H., Yamaguchi, K., Mayora, O.: Relational Metric: A New Metric for Network Service and In-network Resource Control. In: Proceedings of IEEE Consumer Communications and Networking Conference (CCNC 2012), Work-In-Progress session (2012)Google Scholar
  7. 7.
    Kida, A., Shinkuma, R., Takahashi, T., Yamaguchi, K., Kasai, H., Mayora, O.: System Design for Estimating Social Relationships from Sensing Data. In: Proceedings of IEEE International Conference on Advanced Information Networking and Applications (AINA 2013), Workshop on Data Management for Wireless and Pervasive Communications (2013)Google Scholar
  8. 8.
    Yogo, K., Kida, A., Shinkuma, R., Kasai, H., Yamaguchi, K., Takahashi, T.: Extraction of Hidden Common Interests between People Using New Social-graph Representation. In: Proceedings of International Conference on Computer Communications and Networks (ICCCN 2011), Workshop on Social Interactive Media Networking and Applications (August 2011)Google Scholar
  9. 9.
    Borgatti, S.P.: Centrality and network flow. Social Networks 27(1), 55–71 (2005)CrossRefGoogle Scholar
  10. 10.
    Nishio, T., Shinkuma, R., Pellegrini, F.D., Kasai, H., Yamaguchi, K., Takahashi, T.: Trigger Detection Using Geographical Relation Graph for Social Context Awareness. Mobile Networks and Applications 17(6), 831–840 (2012)CrossRefGoogle Scholar
  11. 11.
    Shetty, J., Adibi, J.: The Enron email dataset database schema and brief statistical report. database schema and brief statistical report. Information Sciences Institute, vol. 4 (2004)Google Scholar
  12. 12.
    McNett, M., Voelker, G.M.: Access and mobility of wireless pda users. Technical report, Computer Science and Engineering, UC San Diego (2004)Google Scholar
  13. 13.
    The Institute of Electronics, Information and Communication Engineers (IEICE), Japan,
  14. 14.
    Newman, M.E.: Models of the Small World. Journal of Statistical Physics 101(3-4), 819–841 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Fronczak, A., Hołyst, J.A., Jedynak, M., Sienkiewicz, J.: Higher order clustering coefficients in Barabási-Albert networks. Physica A: Statistical Mechanics and its Applications 316 (1), 688–694 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A: Statistical Mechanics and its Applications 272(1), 173–187 (1999)CrossRefGoogle Scholar
  17. 17.
    Linden, G., Smith, B., York, J.: recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)CrossRefGoogle Scholar
  18. 18.
    Pan, J., Paul, S., Jain, R.: A survey of the research on future internet architectures. IEEE Communications Magazine 49(7), 26–36 (2011)CrossRefGoogle Scholar
  19. 19.
    Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B.: A survey of information-centric networking. IEEE Communications Magazine 50(7), 26–36 (2012)CrossRefGoogle Scholar
  20. 20.
    Carzaniga, A., Papalini, M., Wolf, A.L.: Content-based publish/subscribe networking and information-centric networking. In: Proceedings of the ACM SIGCOMM Workshop on Information-centric Networking (ICN 2011), pp. 56–61 (2011)Google Scholar
  21. 21.
    Moy, J.: OSPF Version 2. RFC 1247 (Draft Standard). Obsoleted by RFC 1583, updated by RFC 1349 (July 1991)Google Scholar
  22. 22.
  23. 23.
    Borst, S., Gupta, V., Walid, A.: “Distributed Caching Algorithms for Content Distribution Networks. In: Proceedings of IEEE International Conference on Computer Communications (INFOCOM 2010), pp. 1–9 (2010)Google Scholar
  24. 24.
    Vakali, A., Pallis, G.: Content delivery networks: Status and trends. IEEE Internet Computing 7(6), 68–74 (2003)CrossRefGoogle Scholar
  25. 25.
    Fortz, B., Thorup, M.: Optimizing OSPF/IS-IS weights in a changing world. IEEE Journal on Selected Areas in Communications 20(4), 756–767 (2002)CrossRefGoogle Scholar
  26. 26.
    Breslau, L., Phillips, G., Shenker, S.: Web caching and Zipf-like distributions: evidence and implications. In: Proceedings of 18th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 1999), vol. 1, pp. 126–134 (1999)Google Scholar
  27. 27.
    Korupolu, M., Dahlin, M.: Coordinated placement and replacement for large-scale distributed caches. IEEE Transactions on Knowledge and Data Engineering 14(6), 1317–1329 (2002)CrossRefGoogle Scholar
  28. 28.
    Appa, G., Kotnyek, B.: A bidirected generalization of network matrices. Networks 47(4), 185–198 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Shinkuma, R., Jain, S., Yates, R.: In-network caching mechanisms for intermittently connected mobile users. In: Proceedings of 34th IEEE Sarnoff Symposium, pp. 1–6 (2011)Google Scholar
  31. 31.
    Adamic, L.A., Huberman, B.A.: Zipf’s law and the Internet. Glottometrics 3, 143–150 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ryoichi Shinkuma
    • 1
    Email author
  • Yasuharu Sawada
    • 1
  • Yusuke Omori
    • 1
  • Kazuhiro Yamaguchi
    • 2
  • Hiroyuki Kasai
    • 3
  • Tatsuro Takahashi
    • 1
  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan
  2. 2.Kobe Digital Labo, IncKobeJapan
  3. 3.The University of Electro-communicationsChofuJapan

Personalised recommendations