Future Human-Centric Smart Environments

  • María V. Moreno-CanoEmail author
  • José Santa
  • Miguel A. Zamora-Izquierdo
  • Antonio F. Skarmeta
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 4)


Internet of Things (IoT) is already a reality, with a vast number of Internet connected objects and devices that has exceeded the number of humans on Earth. Nowadays, there is a novel IoT paradigm that is rapidly gaining ground, this is the scenario of modern human-centric smart environments, where people are not passively affected by technology, but actively shape its use and influence. However, for achieving user-centric aware IoT that brings together people and their devices into a sustainable ecosystem, first, it is necessary to deal with the integration of disparate technologies, ensuring trusted communications, managing the huge amount of data and services, and bringing users to an active involvement. In this chapter, we describe such challenges and present the interesting user-centric perspective of IoT. Furthermore, a management platform for smart environments is presented as a proposal to cover these needs, based on a layered architecture using artificial intelligent capabilities to transform raw data into semantically meaningful information used by services. Two real use cases framed in the smart buildings field exemplify the usefulness of this proposal through a real-system implementation called City Explorer. City Explorer is already deployed in several installations of the University of Murcia, where services such as energy efficiency, appliance management, and analysis of the impact of user involvement in the system are being provided at the moment.


User-Centric IoT Smart Buildings Energy Efficiency Context Awareness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer Networks 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ganti, R.K., Fan, Y., Hui, L.: Mobile crowdsensing: Current state and future challenges. IEEE Communications Magazine 49(11), 32–39 (2011)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Bélissent, J.: Getting clever about smart cities: new opportunities require new business models (2010)Google Scholar
  5. 5.
    Ducatel, K., et al.: Scenarios for ambient intelligence 2010, ISTAG report, European Commission. Institute for Prospective Technological Studies, Seville, (November 2001)
  6. 6.
    Newell, A.: Unified theories of cognition, vol. 187. Harvard University Press (1994)Google Scholar
  7. 7.
    Wasserman, S.: Social network analysis: Methods and applications, vol. 8. Cambridge University Press (1994)Google Scholar
  8. 8.
    ISTAG. Report on revising europe ict strategy. Technical report, European Commission (2009)Google Scholar
  9. 9.
    Spiliotopoulos, T., Oakley, I.: Applications of Social Network Analysis for User ModelingGoogle Scholar
  10. 10.
    Shi, Y., Larson, M., Hanjalic, A.: Towards understanding the challenges facing effective trust-aware recommendation. Recommender Systems and the Social Web, 40 (2010)Google Scholar
  11. 11.
    Vassileva, J.: Motivating participation in social computing applications: a user modeling perspective. User Modeling and User-Adapted Interaction 22(1-2), 177–201 (2012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann (2005)Google Scholar
  13. 13.
    Bin, S., Yuan, L., Xiaoyi, W.: Research on data mining models for the internet of things. In: 2010 International Conference on Image Analysis and Signal Processing (IASP). IEEE (2010)Google Scholar
  14. 14.
    Reilly, D., Taleb-Bendiab, A.: An jini-based infrastructure for networked appliance management and adaptation. In: Proceedings of the 2002 IEEE 5th International Workshop on Networked Appliances, Liverpool. IEEE (2002)Google Scholar
  15. 15.
    Sarikaya, B., Ohba, Y., Moskowitz, R., Cao, Z., Cragie, R.: Security Bootstrapping Solution for Resource-Constrained Devices. IETF Internet-Draft (2012)Google Scholar
  16. 16.
    Tschofenig, H., Gilger, J.: A Minimal (Datagram) Transport Layer Security Implementation. IETF Internet-Draft (2012)Google Scholar
  17. 17.
    Kivinen, T.: Minimal IKEv2, IETF Internet-Draft (2012)Google Scholar
  18. 18.
    Moskowitz, R.: HIP Diet EXchange (DEX), IETF Internet-Draft (2012)Google Scholar
  19. 19.
    Zamora-Izquierdo, M.A., Santa, J., Gomez-Skarmeta, A.F.: An Integral and Networked Home Automation Solution for Indoor Ambient Intelligence. IEEE Pervasive Computing 9, 66–77 (2010)CrossRefGoogle Scholar
  20. 20.
    Nieto, I., Botía, J.A., Gómez-Skarmeta, A.F.: Information and hybrid architecture model of the OCP contextual information management system. Journal of Universal Computer Science 12(3), 357–366 (2006)Google Scholar
  21. 21.
    Centre Europeen de Normalisation: Indoor Environmental Input Parameters for Design and Assesment of Energy Performance of Buildings - Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. EN 15251 (2006)Google Scholar
  22. 22.
    Handbook, A. S. H. R. A. E. Fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers. Atlanta (2001)Google Scholar
  23. 23.
    Perez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy and Buildings 40(3), 394–398 (2008)CrossRefGoogle Scholar
  24. 24.
    Moreno-Cano, M.V., Zamora-Izquierdo, M.A., Santa, J., Skarmeta, A.F.: An Indoor Localization System Based on Artificial Neural Networks and Particle Filters Applied to Intelligent Buildings. Neurocomputing 122, 116–125 (2013)CrossRefGoogle Scholar
  25. 25.
    Berglund, L.: Mathematical models for predicting the thermal comfort response of building occupants. ASHRAE Transactions 84(1), 1848–1858 (1978)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • María V. Moreno-Cano
    • 1
    Email author
  • José Santa
    • 1
  • Miguel A. Zamora-Izquierdo
    • 1
  • Antonio F. Skarmeta
    • 1
  1. 1.Department of Information and Communications Engineering, Facultad de InformáticaUniversity of MurciaMurciaSpain

Personalised recommendations