Advertisement

How the Big Data Is Leading the Evolution of ICT Technologies and Processes

  • Antonio ScarfòEmail author
  • Francesco Palmieri
Chapter
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 4)

Abstract

This chapter has the main aim of providing an overview of the evolution process related to big data and its impact on the organization of ICT-related companies and enterprises. It starts from the severe scalability limits and performance issues introduced by the need of accessing massive amounts of distributed information, by highlighting the most important innovation trends, and developments characterizing this new architectural scenario both from the technological and the organizational perspectives. By trying to address the missing links in the ICT big picture, we also present the emerging data-driven reference models and solutions in order to give a clearer vision of the near future in the modern information-empowered society, where all the activities are more and more frequently conducted in very large collaborative partnerships involving multiple people and equipment scattered throughout the world.

Keywords

Big Data Analytics Modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Telecommunication Union: World telecommunication/ict indicators database, 16th edn. (2012)Google Scholar
  2. 2.
    YouTube: Statistics (November 2013), http://www.youtube.com/yt/press/statistics.html
  3. 3.
    Brumfiel, G.: Down the petabyte highway. Nature 469(20), 282–283 (2011)Google Scholar
  4. 4.
  5. 5.
    Open Government Initiative: Open government data, http://opengovernmentdata.org/
  6. 6.
    McKinsey Global Institute: Big data: The next frontier for innovation, competition, and productivity (2011), http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
  7. 7.
    McKinsey Global Institute: Disruptive technologies: Advances that will transform life, business, and the global economy (2013), http://www.mckinsey.com/insights/business_technology/disruptive_technologies
  8. 8.
    Loecher, M., Jebara, T.: Citysense: Multiscale space time clustering of gps points and trajectories. In: Proceedings of the Joint Statistical Meeting (2009)Google Scholar
  9. 9.
    IDC iView: Big data, bigger digital shadows, and biggest growth in the far east (2012), http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
  10. 10.
    Meeker, M., Wu, L.: Kpcb internet trends (2013), http://www.kpcb.com/insights
  11. 11.
    Bonwick, J., Ahrens, M., Henson, V., Maybee, M., Shellenbaum, M.: The zettabyte file system. In: Proc. of the 2nd Usenix Conference on File and Storage Technologies (2003)Google Scholar
  12. 12.
    Nelson, M.R.: Lzw data compression. Dr. Dobb’s Journal 14(10), 29–36 (1989)Google Scholar
  13. 13.
    Welch, T.A.: A technique for high-performance data compression. Computer 17(6), 8–19 (1984)CrossRefGoogle Scholar
  14. 14.
    Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory 24(5), 530–536 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Gailly, J.L., Adler, M.: The gzip compressor (1999), http://www.gzip.org/
  16. 16.
    Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm (1994)Google Scholar
  17. 17.
    Seward, J.: The bzip2 algorithm (2000), http://sources.redhat.com/bzip2
  18. 18.
    Wallace, G.K.: The jpeg still picture compression standard. Communications of the ACM, 30–44 (1991)Google Scholar
  19. 19.
    Boutell, T.: Png (portable network graphics) specification version 1.0 (1997)Google Scholar
  20. 20.
    Schmuck, F.B., Haskin, R.L.: Gpfs: A shared-disk file system for large computing clusters. In: FAST, vol. 2, p. 19 (2002)Google Scholar
  21. 21.
    Leavitt, N.: Will nosql databases live up to their promise? Computer 43(2), 12–14 (2010)CrossRefGoogle Scholar
  22. 22.
    Copeland, G.P., Khoshafian, S.N.: A decomposition storage model. ACM SIGMOD Record 14(4), 268–279 (1985)CrossRefGoogle Scholar
  23. 23.
    Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., et al.: C-store: a column-oriented dbms. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 553–564. VLDB Endowment (2005)Google Scholar
  24. 24.
    Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: How different are they really? In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 967–980. ACM (2008)Google Scholar
  25. 25.
    Crockford, D.: The application/json media type for javascript object notation (json) (2006)Google Scholar
  26. 26.
    Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)CrossRefGoogle Scholar
  27. 27.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. ACM Transactions on Computer Systems (TOCS) 26(2) (2008)Google Scholar
  28. 28.
    Auradkar, A., Botev, C., Das, S., De Maagd, D., Feinberg, A., Ganti, P., Gao, L., Ghosh, B., Gopalakrishna, K., Harris, B., et al.: Data infrastructure at linkedin. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE), pp. 1370–1381. IEEE (2012)Google Scholar
  29. 29.
    Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: Wtf: The who to follow service at twitter. In: Proceedings of the 22nd International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 505–514 (2013)Google Scholar
  30. 30.
    DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value store. In: SOSP, vol. 7, pp. 205–220 (2007)Google Scholar
  31. 31.
    Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data serving platform. Proceedings of the VLDB Endowment 1(2), 1277–1288 (2008)CrossRefGoogle Scholar
  32. 32.
    Chodorow, K.: MongoDB: the definitive guide. O’Reilly (2013)Google Scholar
  33. 33.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Communications of the ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  34. 34.
    White, T.: Hadoop: the definitive guide. O’Reilly (2012)Google Scholar
  35. 35.
    Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10. IEEE (2010)Google Scholar
  36. 36.
    George, L.: HBase: the definitive guide. O’Reilly Media, Inc. (2011)Google Scholar
  37. 37.
    Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce framework. Proceedings of the VLDB Endowment 2(2), 1626–1629 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MaticMind SpA, CDN Isola F4NaplesItaly
  2. 2.Dept. of Industrial and Information EngineeringSecond University of NaplesAversa (CE)Italy

Personalised recommendations