Skip to main content

Gonadal Hormones Organize the Adolescent Brain and Behavior

  • Chapter
  • First Online:
Brain Crosstalk in Puberty and Adolescence

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI,volume 13))

Abstract

Sexual differentiation of the nervous system and behavior occurs through organizational effects of gonadal hormones acting during early neural development and again during puberty. In rodents, a transient elevation in testosterone around the time of birth masculinizes and defeminizes the male brain, creating structural sexual dimorphisms and programming sex-typical responses to gonadal hormones in adulthood. A second wave of sexual differentiation occurs when levels of gonadal hormones are elevated at the time of puberty. At this time, both testicular and ovarian hormones further masculinize and feminize the male and female brain, respectively, fine-tuning sex differences in adult behavior. To test the hypothesis that the peripubertal period is a sensitive period for hormone-dependent sexual differentiation that is separate and distinct from the perinatal period, exposure to testosterone was experimentally manipulated in male Syrian hamsters to occur either prepubertally, during puberty, or in young adulthood. This experiment revealed that the perinatal and peripubertal periods of masculinization of male sexual behavior are not two separate critical periods of sensitivity to organizing effects of testosterone. Instead, the two periods of masculinization are driven by the two naturally occurring elevations in gonadal hormones. To explore possible neural mechanisms of peripubertal organizational effects of gonadal hormones, cell birth-dating experiments in male and female rats revealed sex differences in the addition of new cells, including both neurons and glia, to sexually dimorphic cell groups in the hypothalamus and medial amygdala. These sex differences in cell addition were positively correlated with sex differences in the volume of these cell groups. Prepubertal gonadectomy abolished sex differences in the pubertal addition of new cells. These experiments provide evidence that gonadal hormone-dependent sex differences in pubertal cytogenesis contribute to the establishment or maintenance of sexual dimorphisms in the adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed EI, Zehr JL, Schulz KM, Lorenz BH, DonCarlos LL, Sisk CL (2008) Pubertal hormones modulate the addition of new cells to sexually dimorphic brain regions. Nat Neurosci 11:995–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arai Y, Murakami S, Nishizuka M (1994) Androgen enhances neuronal degeneration in the developing preoptic area: apoptosis in the anteroventral periventricular nucleus (AVPvN-POA). Horm Behav 28:313–319

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Sekine Y, Murakami S (1996) Estrogen and apoptosis in the developing sexually dimorphic preoptic area in female rats. Neurosci Res 25:403–407

    Article  CAS  PubMed  Google Scholar 

  • Baum MJ (1979) Differentiation of coital behavior in mammals: a comparative analysis. Neurosci Biobehav Rev 3:265–284

    Article  CAS  PubMed  Google Scholar 

  • Baum MJ, Tobet SA, Cherry JA, Paredes RG (1996) Estrogenic control of preoptic area development in a carnivore, the ferret. Cell Mol Neurobiol 16:117–128

    Article  CAS  PubMed  Google Scholar 

  • Bloch G, Mills R, Gale S (1995) Prepubertal testosterone treatment of female rats: defeminization of behavioral and endocrine function in adulthood. Neurosci Biobehav Rev 19:177–186

    Article  CAS  PubMed  Google Scholar 

  • Cameron HA, Dayer AG (2008) New interneurons in the adult neocortex: small, sparse, but significant? Biol Psychiatry 63:650–655

    Article  PubMed Central  PubMed  Google Scholar 

  • Cooke BM, Woolley CS (2005) Sexually dimorphic synaptic organization of the medial amygdala. J Neurosci 25:10759–10767

    Article  CAS  PubMed  Google Scholar 

  • Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM (1998) Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol 19:323–362

    Article  CAS  PubMed  Google Scholar 

  • Cooke BM, Stokas MR, Woolley CS (2007) Morphological sex differences and laterality in the prepubertal medial amygdala. J Comp Neurol 501:904–915

    Article  PubMed  Google Scholar 

  • Davis EC, Shryne JE, Gorski RA (1996a) Structural sexual dimorphisms in the anteroventral periventricular nucleus of the rat hypothalamus are sensitive to gonadal steroids perinatally, but develop peripubertally. Neuroendocrinology 63:142–148

    Article  CAS  PubMed  Google Scholar 

  • Davis EC, Popper P, Gorski RA (1996b) The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res 734:10–18

    Article  CAS  PubMed  Google Scholar 

  • Dohler KD, Coquelin A, Davis F, Hines M, Shryne JE, Gorski RA (1982) Differentiation of the sexually dimorphic nucleus in the preoptic area of the rat brain is determined by the perinatal hormone environment. Neurosci Lett 33:295–298

    Article  CAS  PubMed  Google Scholar 

  • Dohler KD, Coquelin A, Davis F, Hines M, Shryne JE, Gorski RA (1984) Pre- and postnatal influence of testosterone propionate and diethylstilbestrol on differentiation of the sexually dimorphic nucleus of the preoptic area in male and female rats. Brain Res 302:291–295

    Article  CAS  PubMed  Google Scholar 

  • Field EF, Whishaw IQ, Forgie ML, Pellis SM (2004) Neonatal and pubertal, but not adult, ovarian steroids are necessary for the development of female-typical patterns of dodging to protect a food item. Behav Neurosci 118:1293–1304

    Article  CAS  PubMed  Google Scholar 

  • Hoffman GE, Le WW, Schulterbrandt T, Legan SJ (2005) Estrogen and progesterone do not activate Fos in AVPV or LHRH neurons in male rats. Brain Res 1054:116–124

    Article  CAS  PubMed  Google Scholar 

  • Jacobson CD, Davis FC, Gorski RA (1985) Formation of the sexually dimorphic nucleus of the preoptic area: neuronal growth, migration and changes in cell number. Brain Res 353:7–18

    Article  CAS  PubMed  Google Scholar 

  • Johnson RT, Breedlove SM, Jordan CL (2008) Sex differences and laterality in astrocyte number and complexity in the adult rat medial amygdala. J Comp Neurol 511:599–609

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson RT, Breedlove SM, Jordan CL (2012a) Androgen receptors mediate masculinization of astrocytes in the rat posterodorsal medial amygdala during puberty. J Comp Neurol 521:2298–2309

    Google Scholar 

  • Johnson RT, Schneider A, DonCarlos LL, Breedlove SM, Jordan CL (2012b) Astrocytes in the rat medial amygdala are responsive to adult androgens. J Comp Neurol 520:2531–2544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juraska JM, Sisk CL, DonCarlos LL (2013) Sexual differentiation of the adolescent rodent brain: hormonal influences and developmental mechanisms. Horm Behav 64:203–210

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Shinoda A, Yamanouchi K, Arai Y (1990) Role of septum and preoptic area in regulating masculine and feminine sexual behavior in male rats. Horm Behav 24:421–434

    Article  CAS  PubMed  Google Scholar 

  • Mohr MA, Sisk CL (2013) Pubertally born neurons and glia are functionally integrated into limbic and hypothalamic circuits of the male Syrian hamster. Proc Natl Acad Sci U S A 110:4792–4797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris JA, Jordan CL, Breedlove SM (2008) Sexual dimorphism in neuronal number of the posterodorsal medial amygdala is independent of circulating androgens and regional volume in adult rats. J Comp Neurol 506:851–859

    Article  PubMed  Google Scholar 

  • Murakami S, Arai Y (1989) Neuronal death in the developing sexually dimorphic periventricular nucleus of the preoptic area in the female rat: effect of neonatal androgen treatment. Neurosci Lett 102:185–190

    Article  CAS  PubMed  Google Scholar 

  • Petersen L, Barraclough C (1989) Suppression of spontaneous LH surges in estrogen-treated ovariectomized rats by microimplants of antiestrogens into the preoptic brain. Brain Res 484:279–289

    Article  CAS  PubMed  Google Scholar 

  • Phoenix C, Goy R, Gerall A, Young W (1959) Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65:369–382

    Article  CAS  PubMed  Google Scholar 

  • Primus R, Kellogg C (1990) Gonadal hormones during puberty organize environment-related social interaction in the male rat. Horm Behav 24:311–323

    Article  CAS  PubMed  Google Scholar 

  • Romeo RD, Richardson HN, Sisk CL (2002) Puberty and the maturation of the male brain and sexual behavior: recasting a behavioral potential. Neurosci Biobehav Rev 26:381–391

    Article  PubMed  Google Scholar 

  • Schulz KM, Sisk CL (2006) Pubertal hormones, the adolescent brain, and the maturation of social behaviors: lessons from the Syrian hamster. Mol Cell Endocrinol 254–255:120–126

    Article  PubMed  Google Scholar 

  • Schulz KM, Richardson HM, Zehr JL, Osetek AJ, Menard TA, Sisk CL (2004) Gonadal hormones masculinize and defeminize reproductive behaviors during puberty in the male Syrian hamster. Horm Behav 45:242–249

    Article  CAS  PubMed  Google Scholar 

  • Schulz KM, Menard TA, Smith DA, Albers HE, Sisk CL (2006) Testicular hormone exposure during adolescence organizes flank-marking behavior and vasopressin receptor binding in the lateral septum. Horm Behav 50:477–483

    Article  CAS  PubMed  Google Scholar 

  • Schulz KM, Zehr JL, Salas-Ramirez KY, Sisk CL (2009) Testosterone programs adult social behavior before and during, but not after, adolescence. Endocrinology 150:3690–3698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sisk CL, Zehr JL (2005) Pubertal hormones organize the adolescent brain and behavior. Front Neuroendocrinol 26:163–174

    Article  CAS  PubMed  Google Scholar 

  • Sisk CL, Schulz KM, Zehr JL (2003) Puberty: a finishing school for male social behavior. Ann N Y Acad Sci 1007:189–198

    Article  PubMed  Google Scholar 

  • Swithers SE, McCurley M, Hamilton E, Doerflinger A (2008) Influence of ovarian hormones on development of ingestive responding to alterations in fatty acid oxidation in female rats. Horm Behav 54:471–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallen K, Baum MJ (2002) Masculinization and defeminization in altricial and precocial mammals: comparative aspects of steroid hormone action. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain and behavior. Elsevier, San Diego, pp 385–423

    Chapter  Google Scholar 

  • Wiegand SJ, Terasawa E (1982) Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendocrinology 34:395–404

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl L. Sisk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sisk, C.L. (2015). Gonadal Hormones Organize the Adolescent Brain and Behavior. In: Bourguignon, JP., Carel, JC., Christen, Y. (eds) Brain Crosstalk in Puberty and Adolescence. Research and Perspectives in Endocrine Interactions, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-09168-6_2

Download citation

Publish with us

Policies and ethics