Skip to main content

MRA Inhibition in CKD: More Than Salt and Water

  • Chapter
  • First Online:
Book cover Cardio-Renal Clinical Challenges

Abstract

Chronic kidney disease (CKD) is one of the major causes of morbidity and mortality worldwide and it is closely related to cardiovascular disease. The most important causes of CKD in developed countries are diabetic nephropathy and renovascular disease/hypertension. Despite a proven favorable effect of RAAS blockade on short-term parameters (blood pressure, proteinuria) as well as long term outcome (slower decline of GFR), progression of chronic kidney disease to end stage renal disease still occurs in many patients. Mineralocorticoid receptor activation inhibition is currently being studied as a new therapeutic approach to CKD. Next to the classic anti-diuretic and potassium wasting effects, aldosterone has been shown to directly impact the heart, central nervous system, vasculature and kidneys, promoting inflammation, fibrosis and tissue remodeling, independently of its effect on sodium status and blood pressure. In this chapter we will describe the non-conventional renal and extrarenal effects of aldosterone, and review the effects of mineralocorticoid receptor antagonists in cardiovascular diseases and chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shavit L, Lifschitz MD, Epstein M. Aldosterone blockade and the mineralocorticoid receptor in the management of chronic kidney disease: current concepts and emerging treatment paradigms. Kidney Int. 2012;81(10):955–68.

    Article  CAS  PubMed  Google Scholar 

  2. Williams JS. Evolving research in nongenomic actions of aldosterone. Curr Opin Endocrinol Diabetes Obes. 2013;20(3):198–203.

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen Dinh Cat A, Jaisser F. Extrarenal effects of aldosterone. Curr Opin Nephrol Hypertens. 2012;21(2):147–56.

    Article  CAS  PubMed  Google Scholar 

  4. Ueda K, Nagase M. Mineralocorticoid receptor activation as an etiological factor in kidney diseases. Clin Exp Nephrol. 2014;18(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  5. Ritz E, Tomaschitz A. Aldosterone and kidney: a rapidly moving frontier (an update). Nephrol Dial Transplant. 2013.

    Google Scholar 

  6. Zhu C, Huang S, Yuan Y, Ding G, Chen R, Liu B, et al. Mitochondrial dysfunction mediates aldosterone-induced podocyte damage: a therapeutic target of PPARgamma. Am J Pathol. 2011;178(5):2020–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Terada Y, Ueda S, Hamada K, Shimamura Y, Ogata K, Inoue K, et al. Aldosterone stimulates nuclear factor-kappa B activity and transcription of intercellular adhesion molecule-1 and connective tissue growth factor in rat mesangial cells via serum- and glucocorticoid-inducible protein kinase-1. Clin Exp Nephrol. 2012;16(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  8. Leroy V, De Seigneux S, Agassiz V, Hasler U, Rafestin-Oblin ME, Vinciguerra M, et al. Aldosterone activates NF-kappaB in the collecting duct. J Am Soc Nephrol. 2009;20(1):131–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kasal DA, Barhoumi T, Li MW, Yamamoto N, Zdanovich E, Rehman A, et al. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension. 2012;59(2):324–30.

    Article  CAS  PubMed  Google Scholar 

  10. Lee SH, Yoo TH, Nam BY, Kim DK, Li JJ, Jung DS, et al. Activation of local aldosterone system within podocytes is involved in apoptosis under diabetic conditions. Am J Physiol Renal Physiol. 2009;297(5):F1381–90.

    Article  CAS  PubMed  Google Scholar 

  11. Lalevee N, Rebsamen MC, Barrere-Lemaire S, Perrier E, Nargeot J, Benitah JP, et al. Aldosterone increases T-type calcium channel expression and in vitro beating frequency in neonatal rat cardiomyocytes. Cardiovasc Res. 2005;67(2):216–24.

    Article  CAS  PubMed  Google Scholar 

  12. Perrier R, Richard S, Sainte-Marie Y, Rossier BC, Jaisser F, Hummler E, et al. A direct relationship between plasma aldosterone and cardiac L-type Ca2+ current in mice. J Physiol. 2005;569(Pt 1):153–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gomez AM, Rueda A, Sainte-Marie Y, Pereira L, Zissimopoulos S, Zhu X, et al. Mineralocorticoid modulation of cardiac ryanodine receptor activity is associated with downregulation of FK506-binding proteins. Circulation. 2009;119(16):2179–87.

    Article  CAS  PubMed  Google Scholar 

  14. Ouvrard-Pascaud A, Sainte-Marie Y, Benitah JP, Perrier R, Soukaseum C, Nguyen Dinh Cat A, et al. Conditional mineralocorticoid receptor expression in the heart leads to life-threatening arrhythmias. Circulation. 2005;111(23):3025–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hillebrand U, Schillers H, Riethmuller C, Stock C, Wilhelmi M, Oberleithner H, et al. Dose-dependent endothelial cell growth and stiffening by aldosterone: endothelial protection by eplerenone. J Hypertens. 2007;25(3):639–47.

    Article  CAS  PubMed  Google Scholar 

  16. Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes. 2013;62(2):313–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Mosso LM, Carvajal CA, Maiz A, Ortiz EH, Castillo CR, Artigas RA, et al. A possible association between primary aldosteronism and a lower beta-cell function. J Hypertens. 2007;25(10):2125–30.

    Article  CAS  PubMed  Google Scholar 

  18. Sowers JR, Whaley-Connell A, Epstein M. Narrative review: the emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann Intern Med. 2009;150(11):776–83.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Wada T, Ohshima S, Fujisawa E, Koya D, Tsuneki H, Sasaoka T. Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1 adipocytes. Endocrinology. 2009;150(4):1662–9.

    Article  CAS  PubMed  Google Scholar 

  20. Costa MB, Andrade Ezequiel DG, Morais Lovis JC, Oliveira MM, Baumgratz de Paula R. Aldosterone antagonist decreases blood pressure and improves metabolic parameters in obese patients with the metabolic syndrome. J Clin Hypertens (Greenwich). 2010;12(9):753–5.

    Article  CAS  Google Scholar 

  21. Briet M, Schiffrin EL. Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol. 2010;6(5):261–73.

    Article  CAS  PubMed  Google Scholar 

  22. McQuarrie EP, Freel EM, Mark PB, Fraser R, Connell JM, Jardine AG. Urinary sodium excretion is the main determinant of mineralocorticoid excretion rates in patients with chronic kidney disease. Nephrol Dial Transplant. 2013;28(6):1526–32.

    Article  CAS  PubMed  Google Scholar 

  23. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.

    Article  CAS  PubMed  Google Scholar 

  24. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309–21.

    Article  CAS  PubMed  Google Scholar 

  25. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  26. Lee KK, Shilane D, Hlatky MA, Yang J, Steimle AE, Go AS. Effectiveness and safety of spironolactone for systolic heart failure. Am J Cardiol. 2013;112(9):1427–32.

    Article  CAS  PubMed  Google Scholar 

  27. Navaneethan SD, Nigwekar SU, Sehgal AR, Strippoli GF. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2009;(3):CD007004.

    Google Scholar 

  28. Mavrakanas TA, Gariani K, Martin PY. Mineralocorticoid receptor blockade in addition to angiotensin converting enzyme inhibitor or angiotensin II receptor blocker treatment: an emerging paradigm in diabetic nephropathy: a systematic review. Eur J Intern Med. 2014;25(2):173–6.

    Article  CAS  PubMed  Google Scholar 

  29. Boesby L, Elung-Jensen T, Klausen TW, Strandgaard S, Kamper AL. Moderate antiproteinuric effect of add-on aldosterone blockade with eplerenone in non-diabetic chronic kidney disease. A randomized cross-over study. PLoS One. 2011;6(11):e26904.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ezekowitz JA, McAlister FA. Aldosterone blockade and left ventricular dysfunction: a systematic review of randomized clinical trials. Eur Heart J. 2009;30(4):469–77.

    Article  CAS  PubMed  Google Scholar 

  31. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.

    Article  PubMed  Google Scholar 

  32. Vidt DG. Telmisartan, ramipril, or both in patients at high risk for vascular events. Curr Hypertens Rep. 2008;10(5):343–4.

    Article  PubMed  Google Scholar 

  33. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367(23):2204–13.

    Article  CAS  PubMed  Google Scholar 

  34. Vogt L, Waanders F, Boomsma F, de Zeeuw D, Navis G. Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan. J Am Soc Nephrol. 2008;19(5):999–1007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Slagman MC, Waanders F, Hemmelder MH, Woittiez AJ, Janssen WM, Lambers Heerspink HJ, et al. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ. 2011;343:d4366.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kwakernaak AJ, Krikken JA, Binnenmars SH, Visser FW, Hemmelder MH, Woittiez AJ, et al. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol. 2014;2(5):385–395.

    Article  CAS  PubMed  Google Scholar 

  37. Vegter S, Perna A, Postma MJ, Navis G, Remuzzi G, Ruggenenti P. Sodium intake, ACE inhibition, and progression to ESRD. J Am Soc Nephrol. 2012;23(1):165–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ekinci EI, Clarke S, Thomas MC, Moran JL, Cheong K, MacIsaac RJ, et al. Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care. 2011;34(3):703–9.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Navis G, de Jong PE, Donker AJ, van der Hem GK, de Zeeuw D. Moderate sodium restriction in hypertensive subjects: renal effects of ACE-inhibition. Kidney Int. 1987;31(3):815–9. doi:10.1038/ki.1987.71.

    Article  CAS  PubMed  Google Scholar 

  40. Lijnen P, Staessen J, Fagard R, Amery A. Increase in plasma aldosterone during prolonged captopril treatment. Am J Cardiol. 1982;49(6):1561–3.

    Article  CAS  PubMed  Google Scholar 

  41. Navis G, de Jong P, Donker AJ, van der Hem GK, de Zeeuw D. Diuretic effects of angiotensin-converting enzyme inhibition: comparison of low and liberal sodium diet in hypertensive patients. J Cardiovasc Pharmacol. 1987;9(6):743–8.

    Article  CAS  PubMed  Google Scholar 

  42. Edwards NC, Steeds RP, Stewart PM, Ferro CJ, Townend JN. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. J Am Coll Cardiol. 2009;54(6):505–12.

    Article  CAS  PubMed  Google Scholar 

  43. Siwy J, Schanstra JP, Argiles A, Bakker SJ, Beige J, Boucek P, et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol Dial Transplant. 2014;29(8):1563–70.

    Google Scholar 

  44. Savoia C, Touyz RM, Amiri F, Schiffrin EL. Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension. 2008;51(2):432–9.

    Article  CAS  PubMed  Google Scholar 

  45. Weinberger MH, White WB, Ruilope LM, MacDonald TM, Davidson RC, Roniker B, et al. Effects of eplerenone versus losartan in patients with low-renin hypertension. Am Heart J. 2005;150(3):426–33.

    Article  CAS  PubMed  Google Scholar 

  46. Swaminathan K, Davies J, George J, Rajendra NS, Morris AD, Struthers AD. Spironolactone for poorly controlled hypertension in type 2 diabetes: conflicting effects on blood pressure, endothelial function, glycaemic control and hormonal profiles. Diabetologia. 2008;51(5):762–8.

    Article  CAS  PubMed  Google Scholar 

  47. Spat A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev. 2004;84(2):489–539.

    Article  CAS  PubMed  Google Scholar 

  48. Tomaschitz A, Ritz E, Pieske B, Rus-Machan J, Kienreich K, Verheyen N, et al. Aldosterone and parathyroid hormone interactions as mediators of metabolic and cardiovascular disease. Metabolism. 2014;63(1):20–31.

    Article  CAS  PubMed  Google Scholar 

  49. McCarron DA, Rankin LI, Bennett WM, Krutzik S, McClung MR, Luft FC. Urinary calcium excretion at extremes of sodium intake in normal man. Am J Nephrol. 1981;1(2):84–90.

    Article  CAS  PubMed  Google Scholar 

  50. Maniero C, Fassina A, Guzzardo V, Lenzini L, Amadori G, Pelizzo MR, et al. Primary hyperparathyroidism with concurrent primary aldosteronism. Hypertension. 2011;58(3):341–6.

    Article  CAS  PubMed  Google Scholar 

  51. Carbone LD, Cross JD, Raza SH, Bush AJ, Sepanski RJ, Dhawan S, et al. Fracture risk in men with congestive heart failure risk reduction with spironolactone. J Am Coll Cardiol. 2008;52(2):135–8.

    Article  PubMed  Google Scholar 

  52. Brown JM, Williams JS, Luther JM, Garg R, Garza AE, Pojoga LH, et al. Human interventions to characterize novel relationships between the renin-angiotensin-aldosterone system and parathyroid hormone. Hypertension. 2014;63(2):273–80.

    Article  CAS  PubMed  Google Scholar 

  53. Wu C, Kato TS, Pronschinske K, Qiu S, Naka Y, Takayama H, et al. Dynamics of bone turnover markers in patients with heart failure and following haemodynamic improvement through ventricular assist device implantation. Eur J Heart Fail. 2012;14(12):1356–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Edwards NC, Steeds RP, Chue CD, Stewart PM, Ferro CJ, Townend JN. The safety and tolerability of spironolactone in patients with mild to moderate chronic kidney disease. Br J Clin Pharmacol. 2012;73(3):447–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Gant Bsc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gant, C., Laverman, G.D., Navis, G. (2015). MRA Inhibition in CKD: More Than Salt and Water. In: Goldsmith, D., Covic, A., Spaak, J. (eds) Cardio-Renal Clinical Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-09162-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09162-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09161-7

  • Online ISBN: 978-3-319-09162-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics