Joint Modelling for Longitudinal and Time-to-Event Data: Application to Liver Transplantation Data

  • Ipek Guler
  • Laura Calaza-Díaz
  • Christel Faes
  • Carmen Cadarso-Suárez
  • Elena Giraldez
  • Francisco Gude
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8581)


The joint modelling approaches are often used when an association exists between time-to-event and longitudinal processes. They are recognized for their efficiency involving the association structure between these two processes. Recently, [17] and [14] suggested alternative joint modelling approaches. In this paper, we will focus our attention on the Rizopoulos’ approach. This methodology was applied to Orthotopic Liver Transplantation data (OLT) with a flexible environment for both longitudinal and survival sub-models. Different regression models were fitted to the OLT data and their predictive performances were compared by using time-dependent ROC curves, also, dynamic predictions were obtained for the survival process. Computational aspects (including software) related to the use of the joint modelling approach in practice, were also discussed. The application of joint modelling revealed a hitherto unreported effect: for non-diabetic patients, the longitudinal Glucose levels have a significant effect on survival. In addition the discrimination ability improves over time. However for diabetic patients the association between these two processes is not significant.


Joint Modelling longitudinal survival data time-dependent ROC curves Area Under Curve (AUC) dynamic predictions transplantation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, P.K., Gill, R.D.: Cox‘s Regression Model for Counting Process: A Large Sample Study. Annals of Statistics 10, 1100–1120 (1982)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    van Buuren, S., Groothuis-Oudshoorn, K.: MICE: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software 45(3) (2011)Google Scholar
  4. 4.
    de Boor, C.: A Practical Guide to Splines. Springer, Berlin (1978)Google Scholar
  5. 5.
    Dossett, L.A., Cao, H., Mowery, N.T., Dortch, M.J., Morris Jr., J.M., May, A.K.: Blood glucose variability is associated with mortality in the surgical intensive care unit. Am. Surg. 74(8), 679–685 (2008)Google Scholar
  6. 6.
    Dutkowski, P., De Rougemont, O., Clavien, P.A.: Current and Future Trends in Liver Transplantation in Europe. Gastroenterology 138(3), 802–809 (2010)CrossRefGoogle Scholar
  7. 7.
    Egi, M., Bellomo, R., Stachowski, E., French, C.J., Hart, G.: Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology 105(2), 244–252 (2006)CrossRefGoogle Scholar
  8. 8.
    Heagerty, P.J., Zheng, Y.: Survival model predictive accuracy and ROC curves. Biometrics 61(1), 92–105 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Heagerty, P.J., Saha-Chaudhuri, P.: risksetROC: Riskset ROC estimation from censored survival data. Biometrics 61(1), 92–105 (2012)CrossRefGoogle Scholar
  10. 10.
    Ibrahim, J.G., Chu, H., Chen, L.M.: Basic concepts and methods for joint models of longitudinal and survival data. J. Clin. Oncol. 28(16), 2796–2801 (2010)CrossRefGoogle Scholar
  11. 11.
    Krinsley, J.S.: Glycemic variability: A strong independent predictor of mortality in critically ill patients. Crit. Care Med. 36(11), 3008–3013 (2008)CrossRefGoogle Scholar
  12. 12.
    Laryea, M., Watt, K.D., Molinari, M., Walsh, M.J., McAlister, V.C., Marotta, P.J., et al.: Metabolic syndrome in liver transplant recipients: prevalence and association with major vascular events. Liver Transpl. 13, 1109–1114 (2007)CrossRefGoogle Scholar
  13. 13.
    Meyfroidt, G., Keenan, D.M., Wang, X., Wouters, P.J., Veldhuis, J.D., Van den Berghe, G.: Dynamic characteristics of blood glucose time series during the course of critical illness: effects of intensive insulin therapy and relative association with mortality. Crit. Care Med. 38(4), 1021–1029 (2010)CrossRefGoogle Scholar
  14. 14.
    Philipson, P., Sousa, I., Diggle, P., Williamson, P., Kolamunnage-Dona, R., Henderson, R.: joineR: Joint modelling of repeated measurements and time-to-event data (2012)Google Scholar
  15. 15.
    Pinheiro, J., Bates, D.: Mixed-Effects Models in S and S-PLUS. Springer, New York (2000)Google Scholar
  16. 16.
    Ratcliffe, S.J., Guo, W., Have, T.R.T.: Joint modeling of longitudinal and survival data via a common frailty. Biometrics 60(4), 892–899 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Rizopoulos, D.J.M.: An R package for the joint modelling of longitudinal and time-to-event-data. Journal of Statistical Software 35(9), 1–33 (2010)Google Scholar
  18. 18.
    Rizopoulos, D.: Dynamic predictions and properspective accuracy in joint models for longitudinal and time-to-event data. Biometrics 67, 819–829 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Rizopoulos, D.: Joint Models for Longitudinal and Time-to-Event Data. With Applications in R. Chapman & Hall/CRC Biostatistics Series (2012)Google Scholar
  20. 20.
    Self, S., Pawitan, Y.: Modelling a marker of disease progression and ofset of disease. In: Jewell, N.P., Dietz, K., Farewell, V.T. (eds.) AIDS Epidemiology: Methodological Issues, Birkhauser, Boston (1992)Google Scholar
  21. 21.
    Sweeting, M.J., Thompson, S.G.: Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Giome. J. 53(5), 750–763 (2011)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Wolbers, M., Babiker, A., Sabin, C., et al.: Pretreatment CD4 cell slope and progression to AIDS or death in HIV-infected patients initiating antiretroviral therapy the CASCADE collaboration: A collaboration of 23 cohort studies. PLoS Med 7, e1000239 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ipek Guler
    • 1
  • Laura Calaza-Díaz
    • 1
  • Christel Faes
    • 2
  • Carmen Cadarso-Suárez
    • 1
  • Elena Giraldez
    • 3
  • Francisco Gude
    • 4
  1. 1.Unit of Biostatistics, Department of Statistics and Operations ResearchUniversity of Santiago de CompostelaSpain
  2. 2.Interuniversity Institute for Biostatistics and Statistical BioinformaticsUniversiteit HasseltBelgium
  3. 3.Intensive Care UnitHospital ClínicoSantiago de CompostelaSpain
  4. 4.Clinical Epidemiology UnitHospital ClínicoSantiago de CompostelaSpain

Personalised recommendations