Advertisement

Distributions Families in Counting Bacteria for Compound Sampling

  • Miguel Felgueiras
  • João Paulo Martins
  • Rui Santos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8581)

Abstract

The sensitivity and the specificity of a compound test depend on the distribution underlying the phenomenon. In this paper we consider count distributions unified under Panjer recursive formula and belonging to the Morris family, which verifies useful properties. The influence of the tail weight of the count distributions (that varies among infected and uninfected elements), evaluated in terms of the dispersion index, is investigated in the sensitivity and the specificity of the compound test.

Keywords

Compound tests Panjer system NEF–QVF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boswell, M.T., Gore, S.D., Lovison, G., Patil, G.P.: Annotated bibliography of composite sampling, Part A: 1936–1992. Environ. Ecol. Stat. 3, 1–50 (1996)CrossRefGoogle Scholar
  2. 2.
    Dorfman, R.: The detection of defective members in large populations. Ann. Math. Statistics 14, 436–440 (1943)CrossRefGoogle Scholar
  3. 3.
    Ghahfarokhi, M.A., Iravani, H., Sepehri, M.R.: Application of Katz Family of Distributions for Detecting and Testing Overdispersion in Poisson Regression Models. Proceedings of World Academy of Science: Engineering and Technology 44, 544–550 (2008)Google Scholar
  4. 4.
    Hess, K.T., Liewald, A., Schmidt, K.D.: An extension of Panjer’s recursion. Astin Bull. 32(2), 283–297 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Hwang, F.K.: Group testing with a dilution effect. Biometrika 63, 671–673 (1976)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kim, H., Hudgens, M., Dreyfuss, J., Westreich, D., Pilcher, C.: Comparison of group testing algorithms for case identification in the presence of testing errors. Biometrics 63, 1152–1163 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Molla, D.T., Muniswamy, B.: Power of Tests for Overdispersion Parameter in Negative Binomial Regression Model. IOSRJM 1(4), 29–36 (2012)CrossRefGoogle Scholar
  8. 8.
    Morris, C.: Natural Exponential Families With Quadratic Variance Functions. Annals Stat. 10(1), 65–80 (1982)CrossRefzbMATHGoogle Scholar
  9. 9.
    Morris, C.: Natural Exponential Families With Quadratic Variance Functions: Statistical Theory. Annals Stat. 11(2), 515–529 (1983)CrossRefzbMATHGoogle Scholar
  10. 10.
    Morris, C., Lock, K.: Unifying the Named Natural Exponential Families and Their Relatives. Am. Stat. 63(3), 253–260 (2009)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Panjer, H.: Recursive Evaluation of a Family of Compound Distributions. ASTIN Bull. 12(1), 22–26 (1981)MathSciNetGoogle Scholar
  12. 12.
    Santos, R., Felgueiras, M., Martins, J.P.: Known mean, unknown maxima? Testing the maximum knowing only the mean. Commun. Stat. Simulat (Published online: January 23, 2014) doi:10.1080/03610918.2013.773345Google Scholar
  13. 13.
    Santos, R., Pestana, D., Martins, J.P.: Extensions of Dorfman’s Theory. In: Oliveira, P.E., et al. (eds.) Recent Developments in Modeling and Applications in Statistics. Studies in Theoretical and Applied Statistics, Selected Papers of the Statistical Societies, pp. 179–189. Springer (2013)Google Scholar
  14. 14.
    Sundt, B., Jewell, W.S.: Further results on recursive evaluation of compound distributions. Astin Bull. 12(1), 27–39 (1981)MathSciNetGoogle Scholar
  15. 15.
    Tu, X.M., Litvak, E., Pagano, M.: On the informativeness and accuracy of pooled testing in estimating prevalence of a rare disease: Application to HIV screening. Biometrika 82(2), 287–297 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Willmot, G.E.: Sundt and Jewell’s family of discrete distributions. Astin Bull. 18, 17–29 (1988)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Miguel Felgueiras
    • 1
  • João Paulo Martins
    • 1
  • Rui Santos
    • 1
  1. 1.School of Technology and Management, Polytechnic Institute of Leiria and Center of Statistics and ApplicationsUniversity of LisbonLeiriaPortugal

Personalised recommendations