Advertisement

Sensitivity Analysis of Spatial Autocorrelation Using Distinct Geometrical Settings: Guidelines for the Urban Econometrician

  • Antonio Manuel Rodrigues
  • Jose Antonio Tenedorio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8581)

Abstract

Inferences based on spatial analysis of areal data depend greatly on the method used to quantify the degree of proximity between spatial units - regions. These proximity measures are normally organized in the form of weights matrices, which are used to obtain statistics that take into account neighbourhood relations between agents. In any scientific field where the focus is on human behaviour, areal datasets are immensely relevant since this is the most common form of data collection (normally as count data). The method or schema used to divide a continuous spatial surface into sets of discrete units influence inferences about geographical and social phenomena, mainly because these units are neither homogeneous nor regular. This article tests the effect of different geometrical data aggregation schemas on global spatial autocorrelation statistics. Two geographical variables are taken into account: scale (resolution) and form (regularity). This is achieved through the use of different aggregation levels and geometrical schemas. Five different datasets are used, all representing the distribution of resident population aggregated for two study areas, with the objective of consistently test the effect of different spatial aggregation schemas.

Keywords

Spatial Autocorrelation spatial weights matrix spillover effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angel, S., Parent, J., Civco, D.L.: Ten compactness properties of circles: measuring shape in geography. Canadian Geographer / Le Géographe Canadien 54(4), 441–461 (2010), http://doi.wiley.com/10.1111/j.1541-0064.2009.00304.x CrossRefGoogle Scholar
  2. 2.
    Anselin, L.: Spatial Data Analysis With GIS: A Introduction to Application in the Social Sciences (1992)Google Scholar
  3. 3.
    Bivand, R.: The Problem of Spatial Autocorrelation: Forty years on (2011)Google Scholar
  4. 4.
    Bivand, R.S., Pebesma, E.J., Gómez-Rubio, V.: Applied spatial data analysis with R, vol. 747248717. Springer (2008)Google Scholar
  5. 5.
    Cliff, A.D., Ord, K.: Spatial Autocorrelation: A Review of Existing and New Measures with Applications. Economic Geography 46(Suppl.), 269–292 (1970)Google Scholar
  6. 6.
    Dacey, M.F.: The Geometry of Central Place Theory. Geografiska Annaler 47(2), 111–124 (1965)Google Scholar
  7. 7.
    Dormann, C., McPherson, J., Araújo, M., Bivand, R., Bolliger, J., Carl, G., Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., Peres-Neto, P., Reineking, B., Schröder, B., Schurr, F., Wilson, R.: Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30(5), 609–628 (2007), http://dx.doi.org/10.1111/j.2007.0906-7590.05171.x CrossRefGoogle Scholar
  8. 8.
    Fotheringham, A.S., Brunsdon, C., Charlton, M.: Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons (2003)Google Scholar
  9. 9.
    Getis, A.: Reflections on spatial autocorrelation. Regional Science and Urban Economics 37, 491–496 (2007)CrossRefGoogle Scholar
  10. 10.
    Getis, A.: A history of the concept of spatial autocorrelation: A geographer’s perspective. Geographical Analysis 40(3), 297–309 (2008), http://dx.doi.org/10.1111/j.1538-4632.2008.00727.x CrossRefGoogle Scholar
  11. 11.
    Getis, A.: Spatial Weights Matrices. Geographical Analysis 41, 404–410 (2009)CrossRefGoogle Scholar
  12. 12.
    Getis, A., Ord, J.K.: The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis 24(3), 189–206 (1992)CrossRefGoogle Scholar
  13. 13.
    Goodchild, M.F.: What Problem? Spatial Autocorrelation and Geographic Information Science. Geographical Analysis 41(4), 411–417 (2009), http://doi.wiley.com/10.1111/j.1538-4632.2009.00769.x CrossRefGoogle Scholar
  14. 14.
    Koenig, W.D.: Spatial autocorrelation of ecological phenomena. Trends in Ecology & Evolution 14(7, 1) (2014), http://www.cell.com/trends/ecology-evolution/abstract/S0169-53479801533-X
  15. 15.
    Miller, H.J.: Tobler’s first law and spatial analysis. Annals of the Association of American Geographers 94(2), 284–289 (2004)CrossRefGoogle Scholar
  16. 16.
    Rogerson, P.: Statistical Methods for Geography. SAGE Publications (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Antonio Manuel Rodrigues
    • 1
  • Jose Antonio Tenedorio
    • 1
  1. 1.e-GEO - Faculdade de Ciencias Sociais e HumanasUniversidade Nova de LisboaPortugal

Personalised recommendations