Family Lifestyles through the Construction of a Structural Equation Modeling

  • Silvestro Montrone
  • Paola Perchinunno
  • Alessandro Rizzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8581)


The construction of a structural equation modeling can be used to identify the latent variables underlying a determined phenomenon. Developed thanks to the impulses of the statistician psychometrician Karl Joreskog, such models are increasingly applied in the social field. The current study aims at identifying the latent variables underlying the change in family lifestyles caused by the economic recession which has spread in all countries of the European Union and continues to make its effects felt. More specifically, a research carried out by the University of Bari has been taken into account in order to monitor how the lifestyles of the families living in Bari have evolved in time of crisis.


Lifestyles SEM latent variables fitting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wooldridge, J.M.: Econometric Analysis of Cross Section and Panel Data. The M.I.T. Press, Cambridge (2002)zbMATHGoogle Scholar
  2. 2.
    Fabbris, L.: Statistica multivariata. Analisi esplorativa dei dati. McGraw- Hill, Milano (1997)Google Scholar
  3. 3.
    De Leuwe, J., Meulman, J.J.: A special jackknife for multidimensional scaling. Journal of Classification 3, 97–112 (1986)CrossRefGoogle Scholar
  4. 4.
    Meulman, J.J., Heiser, W.J.: Categories 10.0. SPSS Inc., Chicago (1999)Google Scholar
  5. 5.
    Bentler, P.M., Bonnet, D.C.: Significance Test and Goodness of Fit in the Analysis of Covariance Structures. Psychological Bulletin 88(3), 588–606 (1980)CrossRefGoogle Scholar
  6. 6.
    Bollen, K.A.: Sample size and Bentler and Bonnet’s non normed fit index. Psycometria 51, 375–377 (1986)CrossRefGoogle Scholar
  7. 7.
    Bollen, K.A.: A new incremental fit index for general structural equations models. Sociological Method and Research 17, 303–316 (1989)CrossRefGoogle Scholar
  8. 8.
    Bentler, P.M.: Comparative Fit Index Structurals Models. Psychological Bulletin 107(2), 238–246 (1990)CrossRefGoogle Scholar
  9. 9.
    Tucker, L.R., Lewis, C.: A reliability coefficient for maximum likelihood factor analysis. Psycometrika 38, 1–10 (1973)CrossRefzbMATHGoogle Scholar
  10. 10.
    Browne, M.W., Cudeck, R.: Alternative ways of assessing model fit. In: Bollen, K.A., Long, J.S. (eds.) Testing Structural Equations Models, pp. 136–162. Sage, Newbury Park (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Silvestro Montrone
    • 1
  • Paola Perchinunno
    • 1
  • Alessandro Rizzi
    • 1
  1. 1.DISAGUniversity of BariBariItaly

Personalised recommendations