Urban Redevelopment: A Multi-criteria Valuation Model Optimized through the Fuzzy Logic

  • Pierluigi Morano
  • Marco Locurcio
  • Francesco Tajani
  • Maria Rosaria Guarini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8581)


In decision-making processes related to urban redevelopment, the clarity and the transparency play a primary role. In these contexts, the multi-criteria techniques, despite having a wide application, are not always adequate to represent and to quantify the quality effects of the urban initiatives, as well as to compare the alternatives for choosing the best solution, phases in which the logical rules followed by the decision-maker are not usually explicited. In the present work, with reference to a multi-criteria model recently developed for the municipality of Rome (Italy) to streamline and make more transparent the definition of urban regeneration projects, a solution to these issues is proposed, through the use of a fuzzy logic system. Using linguistic variables and expressions of ordinary language, logical rules followed by the decision-maker in performing the evaluations have been formalized. The result is a decision-making process clear and easy to understand, with positive effects on the legitimacy of the decisions of the Public Administration.


Urban redevelopment decision support models multi-criteria analysis fuzzy logic systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Audis: Carta Audis della rigenerazione urbana (2008)Google Scholar
  2. 2.
    Audis: Il Protocollo della qualità di Roma Capitale. Definire e valutare la qualità dei progetti urbani complessi. Roma Capitale, Risorse per Roma (2012)Google Scholar
  3. 3.
    Audis: Monitoraggio della rigenerazione urbana attraverso indicatori condivisi. Ricerca AUDIS per la Regione Emilia Romagna (2010)Google Scholar
  4. 4.
    Bagnoli, C., Smith, H.C.: The Theory of Fuzz Logic and its Application to Real Estate Valuation. Journal of Real Estate Research 16(2) (1998)Google Scholar
  5. 5.
    Bai, Y., Wang, D.: Fundamentals of Fuzzy Logic Control – Fuzzy Sets, Fuzzy Rules and Defuzzifications. In: Advanced Fuzzy Logic Technologies in Industrial Applications. Springer (2006)Google Scholar
  6. 6.
    Bandemer, H., Siegried, G.: Fuzzy sets, fuzzy logic, fuzzy methods: With applications. Chichester. Whiley (1992)Google Scholar
  7. 7.
    Cammarata, S.: Sistemi a logica fuzzy. Come rendere intelligenti le macchine. ETAS Libri, Milano (1997)Google Scholar
  8. 8.
    Chen, S., Hwuang, C.L.: Fuzzy multiple attribute decision making: Methods and applications. Lecture notes in Economics and mathematical systems. Springen, Berlin (1992)CrossRefzbMATHGoogle Scholar
  9. 9.
    De Mare, G., Nesticò, A., Tajani, F.: Building investments for the revitalization of the territory: A multisectoral model of economic analysis. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part III. LNCS, vol. 7973, pp. 493–508. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: Fuzzy sets and systems: Theory and applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  11. 11.
    Filev, D., Yager, R.: A generalized defuzzification method under BAD distributions. Int. J. Intell. Syst. (1991)Google Scholar
  12. 12.
    Jiang, H., Eastman, J.R.: Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science (2010)Google Scholar
  13. 13.
    Kaufmann, A.: Theory of fuzzy subset, vol. I. Academic Press, New York (1975)Google Scholar
  14. 14.
    Klir, G., Folger, T.: Fuzzy sets, uncertainty, and information. Prentice Hall, Englewood, Cliffs (1988)zbMATHGoogle Scholar
  15. 15.
    Kosko, B.: Fuzzy Thinking: The New Science of Fuzzy Logic. Hyperion (1993)Google Scholar
  16. 16.
    Morano, P., Tajani, F.: Break even analysis for the financial verification of urban regeneration projects. Applied Mechanics and Materials 438-439, 1830–1835 (2013)CrossRefGoogle Scholar
  17. 17.
    Morano, P., Tajani, F.: The transfer of development rights for the regeneration of brownfield sites. Applied Mechanics and Materials 409-410, 971–978 (2013)CrossRefGoogle Scholar
  18. 18.
    Munda, G.: Multicriteria evaluation in a fuzzy environment. Physica (1997)Google Scholar
  19. 19.
    Orlowski, S.D., Kacprzyk, J.: Optimization model using fuzzy sets and possibility theory (1987)Google Scholar
  20. 20.
    Ross, T.J.: Fuzzy Logic with Engineering Applications, 2nd edn. John Wiley & Sons, Ltd. (2004)Google Scholar
  21. 21.
    Seo, F., Sakawa, M.: Multiple criteria decision analysis in regional planning – Concepts, methods and application. D. Reidel publishing company (1996)Google Scholar
  22. 22.
    Terano, T., Asai, K., Sugeno, M.: Fuzzy Systems Theory and its Applications. Academic Press Inc., San Diego (1992)Google Scholar
  23. 23.
    Tong, R.M., Bonnisone, P.P.: A linguistic approach to decision-making with Fuzzy Sets. IEEE Transaction on System, Man and Cybernetics smc-10(11) (1980)Google Scholar
  24. 24.
    Veronesi, M., Visioli, A.: Logica Fuzzy. Fondamenti teorici e applicazioni pratiche. Franco Angeli Editore, Milano (2003)Google Scholar
  25. 25.
    Zadeh, L.A.: Calculus of fuzzy Restriction-Fuzzy sets and their application to cognitive and decision process. Academic Press, New York (1975)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pierluigi Morano
    • 1
  • Marco Locurcio
    • 2
  • Francesco Tajani
    • 1
  • Maria Rosaria Guarini
    • 2
  1. 1.Department of Science of Civil Engineering and ArchitecturePolytechnic of BariItaly
  2. 2.Department of Architecture and DesignUniversity "La Sapienza"RomeItaly

Personalised recommendations