Skip to main content

Modelling Impact of Morphological Urban Structure and Cognitive Behaviour on Pedestrian Flows

  • Conference paper
Book cover Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8582))

Included in the following conference series:

Abstract

A novel, discrete space-time model of pedestrian behaviour in real urban networks is presented. An agent-based approach is used to define characteristics of individual pedestrians, based on spatial awareness and cognition theories, combined with preferential choices of different social groups. Behaviour patterns are considered incorporating rules of movement along pedestrian routes and for intermediate decision and conflict points. The model utilises dynamic volunteered geographic information system data allowing analysis of arbitrary city networks and comparison of the effect of grid structure and amenity distribution. As an example, two distinctive social groups are considered, namely ’directed’ and ’leisure’, and their interaction, together with the way in which flow congestion and changes in network morphology affect route choice in central London areas. The resulting stress and flow characteristics of the urban network simulations as well as the impact on individual agent paths and travel times, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carstens, R.L., Ring, S.L.: Pedestrian capacities of shelter entrances. Traffic Engineering 41, 38–43 (1970)

    Google Scholar 

  2. O’Flaherty, C.A., Parkinson, M.H.: Movement on a city centre footway. Traffic Engineering and Control 13, 434–438 (1972)

    Google Scholar 

  3. Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Advances in the Study of Behavior 32, 1–75 (2003)

    Article  Google Scholar 

  4. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A: Statistical Mechanics and its Applications 312(1-2), 260–276 (2002)

    Article  MATH  Google Scholar 

  5. Pan, X., Han, C.S., Dauber, K., Law, K.H.: A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations. AI & Society 22(2), 113–132 (2007)

    Article  Google Scholar 

  6. Augustijn-Beckers, E.W., Flacke, J., Retsios, B.: Investigating the effect of different pre-evacuation behavior and exit choice strategies using agent-based modeling. Procedia Engineering 3, 23–35 (2010)

    Article  Google Scholar 

  7. Lu, Q., George, B., Shekhar, S.: Capacity Constrained Routing Algorithms for Evacuation Planning: A Summary of Results. Department of Computer Science and Engineering, University of Minnesota (2005)

    Google Scholar 

  8. Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences 108(17), 6884–6888 (2011)

    Article  Google Scholar 

  9. Gilbert, N., Troitzsch, K.G.: Simulation of the social scientist. Open University Press (1999)

    Google Scholar 

  10. Fiedrich, F., Burghardt, P.: Agent-based Systems for Disaster Management. Communications of the ACM 50(3), 41–42 (2007)

    Article  Google Scholar 

  11. Schelling, T.C.: Dynamic Models of Segregation. Journal of Mathematical Sociology 1, 143–186 (1971)

    Article  Google Scholar 

  12. Bonabeau, E.: Agent-Based Modelling: Methods and Techniques for Simulating Human Systems. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 99(3), 7280–7287 (2002)

    Article  Google Scholar 

  13. Castle, C.J.E., Crooks, A.T.: Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations. CASA Working Papers, Centre for Advanced Spatial Analysis, UCL (2006)

    Google Scholar 

  14. Cetin, N., Nagel, K., Raney, B., Voellmy, A.: Large-scale multi-agent transportation simulations. Computer Physics Communications 147, 559–564 (2002)

    Article  MATH  Google Scholar 

  15. Henein, C.M., White, T.: Agent-Based Modelling of Forces in Crowds. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415, pp. 173–184. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Crooks, A.T., Castle, C.J.E.: The Integration of Agent-Based Modelling and Geographical Information for Geospatial Simulation. In: Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 219–251. Springer, Netherlands (2012)

    Chapter  Google Scholar 

  17. Longley, P., Batty, M.: Advanced Spatial Analysis: The CASA book of GIS. ESRI Press, Redlands (2003)

    Google Scholar 

  18. Batty, M.: Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. MITPress, Mass (2005)

    Google Scholar 

  19. Andrew, T.C., Sarah, W.: GIS and agent-based models for humanitarian assistance. Computers, Environment and Urban Systems 41, 100–111 (2013)

    Article  Google Scholar 

  20. Batty, M.: Predicting where we walk. Nature 388, 19–20 (1997)

    Article  Google Scholar 

  21. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics. PLoS ONE 5(4), e10047 (2010)

    Google Scholar 

  22. Duckham, M., Kulik, L.: “Simplest” paths: Automated route selection for navigation. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 169–185. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Hillier, B., Iida, S.: Network and Psychological Effects in Urban Movement. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 475–490. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Papadimitriou, E., Yannis, G., Golias, J.: A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour 12(3), 242–255 (2009)

    Article  Google Scholar 

  25. Crooks, A., Castle, C., Batty, M.: Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems 32(6), 417–430 (2008)

    Article  Google Scholar 

  26. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 3142–3176. Springer, Berlin (2009)

    Chapter  Google Scholar 

  27. Schwandt, H., Huth, F., Bärwolff, G., Berres, S.: A Multiphase Convection-Diffusion Model for the Simulation of Interacting Pedestrian Flows. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part V. LNCS, vol. 7975, pp. 17–32. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Antonini, G., Bierlaire, M., Weber, M.: Discrete choice models of pedestrian walking behavior. Transportation Research Part B: Methodological 40(8), 667–687 (2006)

    Article  Google Scholar 

  29. Blecic, I., Cecchini, A., Congiu, T., Pazzola, M., Trunfio, G.: A Design and Planning Support System for Walkability and Pedestrian Accessibility. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part IV. LNCS, vol. 7974, pp. 284–293. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  30. Helbing, D., Molnár, P., Farkas, I.J., Bolay, K.: Self-organizing pedestrian movement. Environment and Planning B: Planning and Design 28(3), 361–384 (2001)

    Article  Google Scholar 

  31. Oberhagemann, D.: Static and Dynamic Crowd Densities at Major Public Events. Technical Report vfdb TB 13-01 (2012)

    Google Scholar 

  32. Design Manual for Roads and Bridges. Pavement Design and Maintenance. Published by the Highways Agency 7, Section 2(5) (2001)

    Google Scholar 

  33. Kowald, M., Frei, A., Hackney, J.K., Illenberger, J., Axhausen, K.W.: Collecting data on leisure travel: The link between leisure contacts and social interactions. Procedia - Social and Behavioral Sciences 4, 38–48 (2010)

    Article  Google Scholar 

  34. Haklay, M.: How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environment and Planning B: Planning and Design 37, 682–703 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bezbradica, M., Ruskin, H.J. (2014). Modelling Impact of Morphological Urban Structure and Cognitive Behaviour on Pedestrian Flows. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8582. Springer, Cham. https://doi.org/10.1007/978-3-319-09147-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09147-1_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09146-4

  • Online ISBN: 978-3-319-09147-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics