Skip to main content

An Orthogonal Set of Weighted Quaternionic Zernike Spherical Functions

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8579))

Included in the following conference series:

Abstract

In this work, we give a brief description of the theory and properties of the three-dimensional quaternionic Zernike spherical polynomials (QZSPs). A refinement of the QZSPs to functions vanishing over the unit sphere leads to the computation of the weighted quaternionic Zernike spherical functions (WQZSFs). In particular, the underlying functions are of three real variables and take on values in the quaternions (identified with ℝ4). Also, in this work, we prove that the WQZSFs are orthonormal in the unit ball with respect to a suitable weight function. The representation of these functions are given explicitly, and a summary of their fundamental properties is also discussed. To the best of our knowledge, this does not appear to have been done in literature before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, R.M., Janssen, A.J.E.M.: On-axis and far field sound radiation from resilient flat and dome-shaped radiators. J. Acoust. Soc. Am. 125, 1444–1455 (2009)

    Article  Google Scholar 

  2. Aarts, R.M., Janssen, A.J.E.M.: Sound radiation quantities arising from a resilient circular radiator. J. Acoust. Soc. Am. 126, 1776–1787 (2009)

    Article  Google Scholar 

  3. Aarts, R.M., Janssen, A.J.E.M.: Sound radiation from a resilient cap on a rigid sphere. J. Acoust. Soc. Am. 127, 2262–2273 (2010)

    Article  Google Scholar 

  4. Aarts, R.M., Janssen, A.J.E.M.: Spatial impulse responses from a flexible baffled circular piston. J. Acoust. Soc. Am. 129, 2952–2959 (2011)

    Article  Google Scholar 

  5. Bará, S., Arines, J., Ares, J., Prado, P.: Direct transformation of Zernike eye aberration coefficients between scaled, rotated, and/or displaced pupils. J. Opt. Soc. Am. 23, 2061–2066 (2006)

    Article  Google Scholar 

  6. Bhatia, A.B., Wolf, E.: On the circle polynomials of Zernike and related orthogonal sets. Proc. Camb. Phil. Soc. 50, 40–48 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bock, S., Gürlebeck, K.: On a generalized Appell system and monogenic power series. Mathematical Methods in the Applied Sciences 33, 394–411 (2009)

    Google Scholar 

  8. Born, M., Wolf, E.: Principles of Optics, ch. 9. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  9. Braat, J.J.M., Haver, S., van, J.A.J.E.M., Dirksen, P.: Assessment of optical systems by means of point-spread functions. In: Wolf, E. (ed.) Progress in Optics, vol. 51, pp. 349–468. Elsevier, Amsterdam (2008)

    Google Scholar 

  10. Cação, I.: Constructive Approximation by Monogenic polynomials. Ph.D. thesis, Universidade de Aveiro (2004)

    Google Scholar 

  11. Cação, I., Gürlebeck, K., Bock, S.: Complete Orthonormal Systems of Spherical Monogenics - A Constructive Approach. In: Son, L.H., et al. (eds.) Methods of Complex and Clifford Analysis, pp. 241–260. SAS International Publications, Delhi (2005)

    Google Scholar 

  12. Cação, I.: Complete orthonormal sets of polynomial solutions of the Riesz and Moisil-Teodorescu systems in ℝ3. Numerical Algorithms 55, 191–203 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cação, I., Morais, J.: An introduction to the quaternionic Zernike spherical polynomials. In: AIP Conf. Proc., vol. 1558, pp. 502–505 (2013)

    Google Scholar 

  14. Canterakis, N.: 3D Zernike moments and zernike affine invariants for 3D image analysis and recognition. In: 11th Scandinavian Conf. on Image Analysis (1999)

    Google Scholar 

  15. Dai, G.-M.: Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula. J. Opt. Soc. Am. A23, 539–543 (2006)

    Google Scholar 

  16. Janssen, A.J.E.M.: A generalization of the Zernike circle polynomials for forward and inverse problems in diffraction theory. ArXiv:1110.2369 (2011)

    Google Scholar 

  17. Kim, C.-J., Shannon, R.R.: Catalog of Zernike polynomials. In: Shannon, R.R., Wyant, J.C. (eds.) Applied Optics and Optical Engineering, vol. 10, pp. 193–221. Academic Press, New York (1987)

    Google Scholar 

  18. Lávicka, R.: Canonical bases for sl(2,C)-modules of spherical monogenics in dimension 3. Arch. Math (Brno) 46, 339–349 (2010)

    MathSciNet  Google Scholar 

  19. Mahajan, V.N.: Zernike annular polynomials and optical aberrations of systems with annular pupils. Appl. Opt. 33, 8125–8127 (1994)

    Article  Google Scholar 

  20. Mathar, R.J.: Zernike basis to cartesian transformations. Serbian Astronomical Journal 179, 107–120 (2009)

    Article  Google Scholar 

  21. Morais, J.: Approximation by homogeneous polynomial solutions of the Riesz system in ℝ3. Ph.D. thesis, Bauhaus-Universität Weimar (2009)

    Google Scholar 

  22. Morais, J., Gürlebeck, K.: Real-Part Estimates for Solutions of the Riesz System in ℝ3. Complex Variables and Elliptic Equations 57, 505–522 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Morais, J., Cação, I.: Quaternion Zernike spherical polynomials. In print by Mathematics of Computation

    Google Scholar 

  24. Nijboer, B.R.A.: The diffraction theory of aberrations. Ph.D. dissertation, University of Groningen, Groningen, Netherlands (1942)

    Google Scholar 

  25. Noll, R.J.: Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66, 207–211 (1976)

    Article  Google Scholar 

  26. Tango, W.J.: The circle polynomials of Zernike and their application in optics. Appl. Phys. 13, 327–332 (1977)

    Article  Google Scholar 

  27. Zernike, F.: Diffraction theory of the knife-edge test and its improved version, the phase-contrast method. Physica (Amsterdam) 1, 689–704 (1934)

    Article  MATH  Google Scholar 

  28. Zernike, F., Brinkman, H.C.: Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome. Proc. Royal Acad. Amsterdam 38, 161–170 (1935)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cação, I., Morais, J. (2014). An Orthogonal Set of Weighted Quaternionic Zernike Spherical Functions. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8579. Springer, Cham. https://doi.org/10.1007/978-3-319-09144-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09144-0_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09143-3

  • Online ISBN: 978-3-319-09144-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics