Skip to main content

Polyatomic Reaction Dynamics from the Barrier Top

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8579))

Included in the following conference series:

  • 1706 Accesses

Abstract

Keck’s idea of simulating a reaction by running trajectories from its transition state (TS) [Discuss. Faraday Soc. 33, 173 (1962)] is formally applied to polyatomic bimolecular reactions involving a barrier with the aim of estimating state-resolved integral cross sections. The two resulting approaches are rigorously equivalent to the conventional quasi-classical trajectory method, but are expected to substantially decrease the number of trajectories necessary to converge the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Porter, R.N., Raff, L.M.: Classical trajectory methods in molecular collisions. In: Miller, W.H. (ed.) Dynamics of Molecular Collisions, pp. 1–52. Plenum, New York (1976)

    Chapter  Google Scholar 

  2. Sewell, T.D., Thomson, D.L.: Classical trajectory methods for polyatomic molecules. Int. J. Mod. Phys. B 11, 1067–1112 (1997)

    Article  Google Scholar 

  3. Bonnet, L.: Classical dynamics of chemical reactions in a quantum spirit. Int. Rev. Phys. Chem. 32, 171–228 (2013)

    Article  Google Scholar 

  4. Nyman, G.: Quantum approaches to polyatomic reaction dynamics. Int. Rev. Phys. Chem. 32, 39–95 (2013)

    Article  Google Scholar 

  5. Kuppermann, A.: Reactive scattering with row-orthonormal hyperspherical coordinates. 4. Four-dimensional-space Wigner rotation function for pentaatomic systems. Phys. Chem. Chem. Phys. 13, 8259–8268 (2011)

    Article  Google Scholar 

  6. Liu, S., Xu, X., Zhang, D.H.: Time-dependent wave packet theory for state-to-state differential cross sections of four-atom reactions in full dimensions: Application to the HD + OH → H2O + D reaction. J. Chem. Phys. 136, 144302 (2012)

    Article  Google Scholar 

  7. Espinosa-García, J., Bonnet, L., Corchado, J.C.: Classical description in a quantum spirit of the prototype four-atom reaction OH + D2. Phys. Chem. Chem. Phys. 12, 3873–3877 (2010)

    Article  Google Scholar 

  8. Sierra, J.D., Bonnet, L., González, M.: Quasi-Classical Trajectory Gaussian Binning Study of the OH + D2 → HOD(v 1′,v 2′,v 3′) + D Angle-Velocity and Vibrational Distributions at a Collision Energy of 0.28 eV. J. Phys. Chem. A 115, 7413–7417 (2011)

    Article  Google Scholar 

  9. Monge-Palacios, M., Espinosa-García, J.: Role of Vibrational and Translational Energy in the OH + NH3 Reaction: A Quasi-Classical Trajectory Study. J. Phys. Chem. A 117, 5042–5051 (2013)

    Article  Google Scholar 

  10. Keck, J.C.: Statistical investigation of dissociation cross-sections for diatoms. Discuss. Faraday Soc. 33, 173 (1962)

    Article  Google Scholar 

  11. Jaffe, R.L., Henry, J.M., Anderson, J.B.: Variational theory of reaction rates: Application to F+H2 = HF+H. J. Chem. Phys. 59, 1128 (1973)

    Article  Google Scholar 

  12. Frost, R.J., Smith, I.W.M.: Combining transition-state theory with quasiclassical trajectory calculations. Part 6. Microcanonical calculations on the reaction: F + H2(v= 0) \(\longrightarrow\) HF(v’)+ H. J. Chem. Soc., Faraday Trans. 2 84, 1837 (1988)

    Article  Google Scholar 

  13. Lourderaj, U., Park, K., Hase, W.L.: Classical trajectory simulations of post-transition state dynamics. Int. Rev. Phys. Chem. 27, 361–403 (2008)

    Article  Google Scholar 

  14. González-Martínez, M.L., Bonnet, L., Larrégaray, P., Rayez, J.-C., Rubayo-Soneira, J.: Transformation from angle-action variables to Cartesian coordinates for polyatomic reactions. J. Chem. Phys. 130, 114103 (2009)

    Article  Google Scholar 

  15. Miller, W.H.: Classical-Limit Quantum Mechanics and the Theory of Molecular Collisions. Adv. Chem. Phys. 25, 69–177 (1974)

    Google Scholar 

  16. Bonnet, L., Rayez, J.-C.: Gaussian weighting in the quasiclassical trajectory method. Chem. Phys. Lett. 397, 106–109 (2004)

    Article  Google Scholar 

  17. Bonnet, L.: Gaussian Weighted Trajectory Method. IV. No Rainbow Effect in Practice. Chin. J. Chem. Phys. 22, 210–214 (2009)

    Article  Google Scholar 

  18. Bañares, L., Aoiz, F.J., Honvault, P., Bussery-Honvault, B., Launay, J.-M.: Quantum mechanical and quasi-classical trajectory study of the C(1D)+H2 reaction dynamics. J. Chem. Phys. 118, 565–568 (2003)

    Article  Google Scholar 

  19. Czakó, G., Bowman, J.M.: Quasiclassical trajectory calculations of correlated product distributions for the F+CHD3(v1=0,1) reactions using an ab initio potential energy surface. J. Chem. Phys. 131, 244302 (2009)

    Article  Google Scholar 

  20. Bonnet, L., Espinosa-García, J.: The method of Gaussian weighted trajectories. V. On the 1GB procedure for polyatomic processes. J. Chem. Phys. 133, 164108 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bonnet, L. (2014). Polyatomic Reaction Dynamics from the Barrier Top. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8579. Springer, Cham. https://doi.org/10.1007/978-3-319-09144-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09144-0_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09143-3

  • Online ISBN: 978-3-319-09144-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics