Skip to main content

Migration Paths Saturations in Meta-epidemic Systems

  • Conference paper
  • 1714 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8579))

Abstract

In this paper we consider a simple two-patch model in which a population affected by a disease can freely move. We assume that the capacity of the interconnected paths is limited, and thereby influencing the migration rates. Possible habitat disruptions due to human activities or natural events are accounted for. The demographic assumptions prevent the ecosystem to be wiped out, and the disease remains endemic in both populated patches at a stable equilibrium, but possibly also with an oscillatory behavior in the case of unidirectional migrations. Interestingly, if infected cannot migrate, it is possible that one patch becomes disease-free. This fact could be exploited to keep disease-free at least part of the population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aimar, V., Borlengo, S., Motto, S., Venturino, E.: A meta-epidemic model with steady state demographics and migrations saturation. In: Simos, T., Psihoylos, G., Tsitouras, C., Anastassi, Z. (eds.) AIP Conf. Proc., ICNAAM 2012, vol. 1479, pp. 1311–1314 (2012), doi:10.1063/1.4756396

    Google Scholar 

  2. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic Profiles of the Steady States for an SIS Epidemic Patch Model. SIAM J. Appl. Math. 67, 1283–1309 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arino, J., van den Driessche, P.: Disease spread in metapopulations. In: Brunner, H., Zhao, X.O., Zou, X. (eds.) Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., vol. 48, pp. 1–13. AMS, Providence (2006)

    Google Scholar 

  4. Arrigoni, F., Pugliese, A.: Limits of a multi-patch SIS epidemic model. J. Math. Biol. 45, 419–440 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barengo, M., Iennaco, I., Venturino, E.: A simple meta-epidemic model. In: Vigo-Aguiar, J., Buslaev, A.P., Cordero, A., Demiralp, M., Hamilton, I.P., Jeannot, E., Kozlov, V.V., Monteiro, M.T., Moreno, J.J., Reboredo, J.C., Schwerdtfeger, P., Stollenwerk, N., Torregrosa, J.R., Venturino, E., Whiteman, J. (eds.) Proceedings of the 12th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2012, La Manga, Spain, July 2-5, vol. 1, pp. 122–133 (2012)

    Google Scholar 

  6. Bianco, F., Cagliero, E., Gastelurrutia, M., Venturino, E.: Metaecoepidemics with migration of and disease in the predators. In: Vigo Aguiar, J., Cortina, R., Gray, S., Ferradiz, J.M., Fernandez, A., Hamilton, I., Lopez-Ramos, J.A., de Oliveira, F., Steinwandt, R., Venturino, E., Whiteman, J., Wade, B. (eds.) Proceedings of the 11th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2011, Benidorm, Spain, June 26-30, vol. 1, pp. 204–223 (2011)

    Google Scholar 

  7. Busenberg, S., Van den Driessche, P.: Analysis of a disease transmission model in a population with varying size. J. Math. Biol. 2, 257–270 (1990)

    Google Scholar 

  8. Gao, L.Q., Hethcote, H.W.: Disease transmission models with density-dependent demographics. J. of Math. Biology 30, 717–731 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gao, D., Ruan, S.: An SIS patch model with variable transmission coefficients. Mathematical Biosciences 232, 110–115 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hanski, I., Gilpin, M.: Metapopulation biology: ecology, genetics and evolution. Academic Press, London (1997)

    MATH  Google Scholar 

  11. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Review 42, 599–653 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jin, Y., Wang, W.: The effect of population dispersal on the spread of a disease. J. Math. Anal. Appl. 308, 343–364 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kermack, W.O., McKendrick, A.G.: A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  14. Lloyd, A., May, R.M.: Spatial heterogeneity in epidemic models. J. Theoret. Biol. 179, 1–11 (1996)

    Article  Google Scholar 

  15. Malchow, H., Petrovskii, S., Venturino, E.: Spatiotemporal patterns in Ecology and Epidemiology. CRC, Boca Raton (2008)

    MATH  Google Scholar 

  16. Mena-Lorca, J., Hethcote, H.W.: Dynamic models of infectious diseases as regulator of population sizes. J. Math. Biology 30, 693–716 (1992)

    MATH  MathSciNet  Google Scholar 

  17. Salmani, M., van den Driessche, P.: A model for disease transmission in a patchy environment. Discrete Contin. Dynam. Systems Ser. B 6, 185–202 (2006)

    MATH  Google Scholar 

  18. Venturino, E.: Simple metaecoepidemic models. Bull. Math. Biol. 73, 917–950 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. von Foerster, H.: Some remarks on changing populations. In: Stohlmann, F. (ed.) The Kinetics of Cellular Proliferation, Grune and Stratton, New York, pp. 382–407 (1959)

    Google Scholar 

  20. Wang, W.: Population dispersal and disease spread. Discrete Contin. Dynam. Systems Ser. B 4, 797–804 (2004)

    Article  MATH  Google Scholar 

  21. Wang, W., Mulone, G.: Threshold of disease transmission in a patch environment. J. Math. Anal. Appl. 285, 321–335 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang, W., Ruan, S.: Simulating the SARS outbreak in Beijing with limited data. J. Theoret. Biol. 227, 369–379 (2004)

    Article  MathSciNet  Google Scholar 

  23. Wang, W., Zhao, X.-Q.: An epidemic model in a patchy environment. Math. Biosci. 190, 97–112 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wiens, J.A.: Wildlife in patchy environments: metapopulations, mosaics, and management. In: McCullough, D.R. (ed.) Metapopulations and Wildlife Conservation, pp. 53–84. Island Press, Washington (1996)

    Google Scholar 

  25. Wiens, J.A.: Metapopulation dynamics and landscape ecology. In: Hanski, I.A., Gilpin, M.E. (eds.), pp. 43–62. Academic Press, San Diego (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Motto, S., Venturino, E. (2014). Migration Paths Saturations in Meta-epidemic Systems. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8579. Springer, Cham. https://doi.org/10.1007/978-3-319-09144-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09144-0_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09143-3

  • Online ISBN: 978-3-319-09144-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics