Skip to main content

Composition of the Crust and the Mantle

  • Chapter
  • First Online:
Quantitative Plate Tectonics
  • 2432 Accesses

Abstract

The external layers of the solid Earth, from the crust to the lower mantle, are the main actors involved in the plate tectonics drama. In this chapter, I describe their chemical composition and introduce the principal geodynamic processes occurring within and between these layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaogi M, Takayama H, Kojitani H, Kawaji H, Atake T (2007) Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α−β−γ and post-spinel phase relations at high pressure. Phys Chem Miner 34:169–183. doi:10.1007/s00269-006-0137-3

    Article  Google Scholar 

  • Anderson DL (1989) Theory of the Earth, 1st edn. Blackwell Scientific, Oxford, 366 pp

    Google Scholar 

  • Anderson DL (1995) Lithosphere, asthenosphere, and perisphere. Rev Geophys 33(1):125–149. doi:10.1029/94RG02785

    Article  Google Scholar 

  • Anderson DL (2000) The thermal state of the upper mantle; no role for mantle plumes. Geophys Res Lett 27(22):3623–3626

    Article  Google Scholar 

  • Anderson DL (2002) Plate tectonics as a far-from-equilibrium self-organized system. In: Stein S, Freymueller JT (eds) Plate boundary zones, vol 30, Geodyn. AGU, Washington, DC, pp 411–425. doi:10.1029/GD030p0411

    Google Scholar 

  • Anderson DL (2006) Speculations on the nature and cause of mantle heterogeneity. Tectonophysics 416:7–22

    Article  Google Scholar 

  • Anderson DL, Bass JD (1986) Transition region of the Earth’s upper mantle. Nature 320:321–328

    Article  Google Scholar 

  • Anderson DL, Natland JH (2005) A brief history of the plume hypothesis and its competitors: concept and controversy. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms, Geological Society of America Special Paper, GSA, 388., pp 119–145

    Chapter  Google Scholar 

  • Bagherbandi M (2012) Combination of seismic and an isostatic crustal thickness models using Butterworth filter in a spectral approach. J Asian Earth Sci 59:240–248

    Article  Google Scholar 

  • Bass JD, Anderson DL (1984) Composition of the upper mantle: geophysical tests of two petrological models. Geophys Res Lett 11:229–232. doi:10.1029/GL011i003p00229

    Article  Google Scholar 

  • Bina CR, Helffrich G (1994) Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J Geophys Res 99(B8):15853–15860. doi:10.1029/94JB00462

    Article  Google Scholar 

  • Bodine JH, Steckler MS, Watts AB (1981) Observations of flexure and the rheology of the oceanic lithosphere. J Geophys Res 86(B5):3695–3707. doi:10.1029/JB086iB05p03695

    Article  Google Scholar 

  • Boillot G, Froitzheim N (2001) Non-volcanic rifted margins, continental break-up and the onset of sea-floor spreading: some outstanding questions. Geol Soc Lond Spec Publ 187:9–30. doi:10.1144/GSL.SP.2001.187.01.02

    Article  Google Scholar 

  • Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature 316:33–37

    Article  Google Scholar 

  • Burke K, Steinberger B, Torsvik TH, Smethurst MA (2008) Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet Sci Lett 265:49–60

    Article  Google Scholar 

  • Carlson RW, Irving AJ, Schulze DJ, Hearn BC Jr (2004) Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen. Lithos 77:453–472

    Article  Google Scholar 

  • Carlson RW, Pearson DG, James DE (2005) Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys 43, RG1001. doi:10.1029/2004RG000156

    Article  Google Scholar 

  • Chase CG (1979) Asthenospheric counterflow: a kinematic model. Geophys J R Astron Soc 56:l–18

    Article  Google Scholar 

  • Chopelas A, Boehler R (1992) Thermal expansivity in the lower mantle. Geophys Res Lett 19(19):1983–1986

    Article  Google Scholar 

  • Christensen U (1995) Effects of phase transitions on mantle convection. Ann Rev Earth Planet Sci 23:65–88

    Article  Google Scholar 

  • Christensen UR, Yuen DA (1985) Layered convection induced by phase transitions. J Geophys Res 90(B12):10291–10300. doi:10.1029/JB090iB12p10291

    Article  Google Scholar 

  • Christeson GL, Morgan JV, Warner MR (2012) Shallow oceanic crust: full waveform tomographic images of the seismic layer 2A/2B boundary. J Geophys Res 117:B05101. doi:10.1029/2011JB008972

    Google Scholar 

  • Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions, and external consequences. Rev Geophys 32(1):1–36. doi:10.1029/93RG02508

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440:659–662. doi:10.1038/nature04612

    Article  Google Scholar 

  • Dewey JF, Burke K (1974) Hot spots and continental break-up: implications for collisional orogeny. Geology 2:57–60

    Article  Google Scholar 

  • Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335:1334–1336. doi:10.1126/science.1216066

    Article  Google Scholar 

  • Duffy TS, Anderson DL (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J Geophys Res 94(B2):1895–1912

    Article  Google Scholar 

  • Eggins SM, Rudnick RL, McDonough WF (1998) The composition of peridotites and their minerals: a laser-ablation ICP–MS study. Earth Planet Sci Lett 154:53–71

    Article  Google Scholar 

  • Garnero EJ, McNamara AK (2008) Structure and dynamics of Earth’s lower mantle. Science 320:626–628. doi:10.1126/science.1148028

    Article  Google Scholar 

  • Green DH, Hibberson WO, Kovács I, Rosenthal A (2010) Water and its influence on the lithosphere–asthenosphere boundary. Nature 467:448–451. doi:10.1038/nature09369

    Article  Google Scholar 

  • Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of mid-ocean ridge basalt (MORB). In: Morgan JP, Blackman DK, Sinton JM (eds) Mantle flow and melt generation at mid-ocean ridges, vol 71, Geophys. Monogr. Ser. AGU, Washington, DC, pp 281–310. doi:10.1029/GM071p0281

    Chapter  Google Scholar 

  • Gu YJ, Lerner-Lam AL, Dziewonski AM, Ekström G (2005) Deep structure and seismic anisotropy beneath the East Pacific Rise. Earth Planet Sci Lett 232:259–272

    Article  Google Scholar 

  • Gutenberg B (1959) The asthenosphere low-velocity layer. Ann Geophys 12(4):439–460

    Google Scholar 

  • Hacker BR, Abers GA (2004) Subduction factory 3: an excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst 5(1), Q01005. doi:10.1029/2003GC000614

    Article  Google Scholar 

  • Hamilton WB (1998) Archean magmatism and deformation were not products of plate tectonics. Precambrian Res 91:143–179

    Article  Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443:811–817. doi:10.1038/nature05191

    Article  Google Scholar 

  • Helffrich GR, Wood BJ (2001) The Earth’s mantle. Nature 412:501–507

    Article  Google Scholar 

  • Herzberg C, Rudnick R (2012) Formation of cratonic lithosphere: an integrated thermal and petrological model. Lithos 149:4–15

    Article  Google Scholar 

  • Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2007) Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem Geophys Geosyst 8(2), Q02006. doi:10.1029/2006GC001390

    Article  Google Scholar 

  • Hirschmann MM (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst 1:1042. doi:10.1029/2000GC000070

    Article  Google Scholar 

  • Hirschmann MM (2006) Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci 34:629–653

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Ishii M, Tromp J (2004) Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys Earth Plan Int 146:113–124

    Article  Google Scholar 

  • Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273

    Article  Google Scholar 

  • Karato S (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett 301:413–423

    Article  Google Scholar 

  • Katz RF, Spiegelman M, Langmuir CH (2003) A new parameterization of hydrous mantle melting. Geochem Geophys Geosyst 4:1073. doi:10.1029/2002GC000433

    Google Scholar 

  • Lee C-TA (2003) Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. J Geophys Res 108(B9):2441. doi:10.1029/2003JB002413

    Article  Google Scholar 

  • Ligi M, Bonatti E, Caratori Tontini F, Cipriani A, Cocchi L, Schettino A, Bortoluzzi G, Ferrante V, Khalil S, Mitchell NC, Rasul N (2011) Initial burst of oceanic crust accretion in the Red Sea due to edge-driven mantle convection. Geology 391(11):1019–1022. doi:10.1130/G32243.1

    Article  Google Scholar 

  • Ligi M, Bonatti E, Bortoluzzi G, Cipriani A, Cocchi L, Caratori Tontini F, Carminati E, Ottolini L, Schettino A (2012) Birth of an ocean in the Red Sea: initial pangs. Geochem Geophys Geosyst 13(8), Q08009. doi:10.1029/2012GC004155

    Article  Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29(3):623–679

    Google Scholar 

  • McKenzie D, Jackson J, Priestley K (2005) Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett 233:337–349. doi:10.1016/j.epsl.2005.02.005

    Article  Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43. doi:10.1038/230042a0

    Article  Google Scholar 

  • Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9(4), Q04006. doi:10.1029/2007GC001743

    Article  Google Scholar 

  • Nicolas A (1989) Structures of ophiolites and dynamics of oceanic lithosphere. Kluwer Academic, Dordrecht, 359 pp

    Book  Google Scholar 

  • Ohtani E, Toma M, Litasov K, Kubo T, Suzuki A (2001) Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle. Phys Earth Plan Int 124:105–117

    Article  Google Scholar 

  • Phipps Morgan J (1987) Melt migration beneath mid-ocean spreading centers. Geophys Res Lett 14(12):1238–1241

    Article  Google Scholar 

  • Plank T, Langmuir CH (1992) Effects of the melting regime on the composition of the oceanic crust. J Geophys Res 97(B13):19749–19770

    Article  Google Scholar 

  • Plomerová J, Kouba D, Babuška V (2002) Mapping the lithosphere–asthenosphere boundary through changes in surface-wave anisotropy. Tectonophysics 358:175–185

    Article  Google Scholar 

  • Ringwood A (1975) Pyrolite and the chondritic Earth model. In: Composition and petrology of the Earth’s mantle. International Series in the Earth’s and Planetary Sciences. McGraw Hill, pp 189–194

    Google Scholar 

  • Ritsema J, van Heijst HJ, Woodhouse JH (2004) Global transition zone tomography. J Geophys Res 109, B02302. doi:10.1029/2003JB002610

    Google Scholar 

  • Robinson PT, Malpas J, Dilek Y, Zhou M (2008) The significance of sheeted dike complexes in ophiolites. GSA Today 18(11):4–10. doi:10.1130/GSATG22A.1

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 1–64

    Chapter  Google Scholar 

  • Schlische RW, Withjack MO, Olsen PE (2002) Relative timing of CAMP, rifting, continental breakup, and basin inversion: tectonic significance. In: Hames W (ed) The central Atlantic magmatic province: insights from fragments of Pangea, vol 136, Geophys. Monogr. Ser. AGU, Washington, DC, pp 33–59. doi:10.1029/136GM03

    Chapter  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  Google Scholar 

  • Shearer PM, Earle PS (2004) The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophys J Int 158:1103–1117. doi:10.1111/j.1365-246X.2004.02378.x

    Article  Google Scholar 

  • Shearer PM, Masters TG (1992) Global mapping of topography on the 660-km discontinuity. Nature 355:791–796

    Article  Google Scholar 

  • Shimizu H, Koyama T, Baba K, Utada H (2010) Revised 1-D mantle electrical conductivity structure beneath the north Pacific. Geophys J Int 180:1030–1048. doi:10.1111/j.1365-246X.2009.04466.x

    Article  Google Scholar 

  • Shirey SB, Richardson SH (2011) Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333:434–436. doi:10.1126/science.1206275

    Article  Google Scholar 

  • Stacey FD (2010) Thermodynamics of the Earth. Rep Prog Phys 73:22 pp. doi:10.1088/0034-4885/73/4/046801

  • Talwani M, Abreu V (2000) Inferences regarding initiation of oceanic crust formation from the U.S. East Coast margin and conjugate South Atlantic margins. In: Mohriak W, Talwani M (eds) Atlantic rifts and continental margins, vol 115, Geophys. Monogr. Ser. AGU, Washington, DC, pp 211–233. doi:10.1029/GM115p0211

    Chapter  Google Scholar 

  • Tanimoto T, Anderson DL (1984) Mapping convection in the mantle. Geophys Res Lett 11:287–290. doi:10.1029/GL011i004p00287

    Article  Google Scholar 

  • Trampert J, Deschamps F, Resovsky J, Yuen D (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306:853–856. doi:10.1126/science.1101996

    Article  Google Scholar 

  • van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from global tomography. Nature 386:578–584. doi:10.1038/386578a0

    Article  Google Scholar 

  • Walzer U, Hendel R, Baumgardner J (2004) The effects of a variation of the radial viscosity profile on mantle evolution. Tectonophysics 384:55–90

    Article  Google Scholar 

  • Weidner DJ, Wang Y (1998) Chemical- and Clapeyron-induced buoyancy at the 660 km discontinuity. J Geophys Res 103(B4):7431–7441. doi:10.1029/97JB03511

    Article  Google Scholar 

  • White RS, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94(B6):7685–7729

    Article  Google Scholar 

  • White RS, McKenzie D, O’Nions RK (1992) Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res 97(B13):19683–19715. doi:10.1029/92JB01749

    Article  Google Scholar 

  • White RS, Minshull TA, Bickle MJ, Robinson CJ (2001) Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data. J Petrol 42(6):1171–1196. doi:10.1093/petrology/42.6.1171

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Zhong S, Gurnis M (1994) Role of plates and temperature-dependent viscosity in phase change dynamics. J Geophys Res 99(B8):15903–15917. doi:10.1029/94JB00545

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schettino, A. (2015). Composition of the Crust and the Mantle. In: Quantitative Plate Tectonics. Springer, Cham. https://doi.org/10.1007/978-3-319-09135-8_1

Download citation

Publish with us

Policies and ethics