Skip to main content

Closest-Point Queries for Complex Objects

  • Conference paper
  • 2254 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8580))

Abstract

In this paper we report on the implementation of a heuristic for preprocessing a set of n points in the plane to find one that is closest to the boundary of an object that is geometrically more complex than a simple point, to wit, a line, a half-line, a line-segment, a rectangle, a convex polygon with a fixed number of sides, a circle, an ellipse, or any other convex object whose boundary has a constant-sized description. Our experimental results show that the heuristic is more effective than a naive brute-force approach for query objects with small perimeter relative to the given point set, and large values of n.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boost C++ Libraries, http://www.boost.org

  2. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org

  3. Atkinson, M.D., Sack, J.-R.: Generating binary trees at random. Inf. Process. Lett. 41(1), 21–23 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Clarkson, K.L.: A randomized algorithm for closest-point queries. SIAM J. Comput. 17, 830–847 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cole, R., Yap, C.K.: Geometric retrieval problems. In: Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci., pp. 112–121 (1983)

    Google Scholar 

  6. de Almeida, V.T.: Towards optimal continuous nearest neighbor queries in spatial databases. In: GIS 2006: Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems, pp. 227–234. ACM, New York (2006)

    Google Scholar 

  7. Goswami, P.P., Das, S., Nandy, S.C.: Triangle range counting query in 2d and its applications in finding k nearest neighbors of a line segment. Computational Geometry: Theory and Applications, 163–175 (2004)

    Google Scholar 

  8. Lee, D.T., Ching, Y.T.: The power of geometric duality revisited. Inform. Process. Lett. 21, 117–122 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu, T., Moore, A.W., Gray, A.G., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: NIPS (2004)

    Google Scholar 

  10. Matousek, J.: Efficient partition trees. Discrete Comput. Geom. 8(3), 315–334 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mitra, P.: Finding the closest point to a query line. In: Toussaint, G. (ed.) Snapshots in Computational Geometry, vol. II, pp. 53–63 (1992)

    Google Scholar 

  12. Mitra, P., Chaudhuri, B.B.: Efficiently computing the closest point to a query line. Pattern Recognition Letters 19, 1027–1035 (1998)

    Google Scholar 

  13. Mitra, P., Mukhopadhyay, A., Rao, S.V.: Computing the closest point to a circle. In: CCCG, pp. 132–135 (2003)

    Google Scholar 

  14. Mukhopadhyay, A.: Using simplicial partitions to determine a closest point to a query line. Pattern Recognition Letters 24, 1915–1920 (2003)

    Article  Google Scholar 

  15. Nandy, S.C., Das, S., Goswami, P.P.: An efficient k nearest neighbors searching algorithm for a query line. TCS: Theoretical Computer Science 299(1), 273–288 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB 2002: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 287–298. VLDB Endowment (2002)

    Google Scholar 

  17. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16(2), 264–280 (1971)

    Google Scholar 

  18. Welzl, E.: Partition trees for triangle counting and other range searching problems. In: SCG 1988: Proceedings of the Fourth Annual Symposium on Computational Geometry, pp. 23–33. ACM Press, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Greene, E., Mukhopadhyay, A. (2014). Closest-Point Queries for Complex Objects. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8580. Springer, Cham. https://doi.org/10.1007/978-3-319-09129-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09129-7_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09128-0

  • Online ISBN: 978-3-319-09129-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics