Skip to main content

Carbon-Concentrating Mechanism of Cyanobacteria

  • Chapter
  • First Online:
  • 1053 Accesses

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

The Gram-negative photosynthetic prokaryotes, cyanobacteria, are thought to be appeared on earth approximately 2,600–3,500 million years ago. Due to their carbon-concentrating mechanism (CCM) system, they are extremely productive and flourish under a wide range of niches. Molecular and biochemical evidence indicates that cyanobacterial CCMs feature multiple active Ci transporters, including three transporters for \({\text{HCO}}_{3}^{ - }\) (at plasma membrane) and two uptake systems for CO2 (at thylakoid membrane). A pool of bicarbonate ion is accumulated within the cell and this is used by the RuBisCO-containing carboxysome to generate CO2 within this localized micro-environment. Carboxysomal carbonic anhydrase is also play a crucial role to this CO2 generation process. This chapter examines the mechanism of the operation of carbon concentrating mechanisms (CCMs) in cyanobacteria in the view of latest findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alber BE, Ferry JG (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Natl Acad Sci 91(15):6909–6913

    Article  Google Scholar 

  • Andersson I, Backlund A (2008) Structure and function of RuBisco. Plant Physiol Biochem 46(3):275–291

    Article  Google Scholar 

  • Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29(3):161–173

    Article  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54(383):609–622

    Article  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57(2):249–265

    Article  Google Scholar 

  • Battchikova N, Aro EM (2007) Cyanobacterial NDH‐1 complexes: multiplicity in function and subunit composition. Physiol Plant 131(1):22–32

    Google Scholar 

  • Battchikova N, Eisenhut M, Aro E-M (2011) Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. Biochimi Biophys Acta Bioenergetics 1807(8):935–944

    Article  Google Scholar 

  • Battchikova N, Vainonen JP, Vorontsova N, Keränen M, Carmel D, Aro EM (2010) Dynamic changes in the proteome of Synechocystis 6803 in response to CO2 limitation revealed by quantitative proteomics. J Proteome Res 9(11):5896–5912

    Google Scholar 

  • Battchikova N, Zhang P, Rudd S, Ogawa T, Aro EM (2005) Identification of NdhL and Ssl1690 (NdhO) in NDH-1L and NDH-1M complexes of Synechocystis sp. PCC 6803. J Biol Chem 280(4):2587–2595

    Google Scholar 

  • Berger S, Ellersiek U, Steinmaller K (1991) Cyanobacteria contain a mitochrondrial complex I-homologous NADH-dehydrogenase. FEBS Lett 286(1):129–132

    Article  Google Scholar 

  • Bernat G, Appel J, Ogawa T, Ragner M (2011) Distinct roles of multiple NDH-1 complexes in the cyanobacterial electron transport network as revealed by kinetic analysis of P700 + reduction in various ndh-deficient mutants of Synechocystis sp. strain PCC6803. J Bacteriol 193(1):292–295

    Article  Google Scholar 

  • Cai F, Sutter M, Cameron JC, Stanley DN, Kinney JN, Kerfeld CA (2013) The structure of CcmP, a tandem bacterial microcompartment domain protein from the β-carboxysome, forms a subcompartment within a microcompartment. J Biol Chem 288(22):16055–16063

    Article  Google Scholar 

  • Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 67(12):5351–5361

    Article  Google Scholar 

  • Cannon GC, Heinhorst S (1804) Kerfeld CA (2010) Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation. Biochimi Biophys Acta Proteins Proteomics 2:382–392

    Google Scholar 

  • Cannon GC, Shively JM (1983) Characterization of a homogenous preparation of carboxysomes from Thiobacillus neapolitanus. Arch Microbiol 134(1):52–59. doi:10.1007/bf00429407

    Article  Google Scholar 

  • Chen P, Andersson DI, Roth JR (1994) The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol 176(17):5474–5482

    Google Scholar 

  • Chen M, Hiller RG, Howe CJ, Larkum AWD (2005) Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems. Mol Biol Evol 22(1):21–28

    Article  Google Scholar 

  • Chen AH, Robinson-Mosher A, Savage DF, Silver PA, Polka JK (2013) The bacterial carbon-fixing organelle is formed by shell envelopment of preassembled cargo. PLoS ONE 8(9):e76127

    Article  Google Scholar 

  • Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Spon Press

    Google Scholar 

  • Colyer CL, Kinkade CS, Viskari PJ, Landers JP (2005) Analysis of cyanobacterial pigments and proteins by electrophoretic and chromatographic methods. Anal Bioanal Chem 382(3):559–569

    Article  Google Scholar 

  • Cot SSW, So AKC, Espie GS (2008) A multiprotein bicarbonate dehydration complex essential to carboxysome function in cyanobacteria. J Bacteriol 190(3):936–945

    Google Scholar 

  • Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown GE, López-García P (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336(6080):459–462

    Google Scholar 

  • Daley SME, Kappell AD, Carrick MJ, Burnap RL (2012) Regulation of the cyanobacterial CO2-concentrating mechanism involves internal sensing of NADP+ and α-ketogutarate levels by transcription factor CcmR. PLoS ONE 7(7):e41286

    Article  Google Scholar 

  • Dou Z, Heinhorst S, Williams EB, Murin CD, Shively JM, Cannon GC (2008) CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J Biol Chem 283(16):10377–10384

    Article  Google Scholar 

  • Drews G, Niklowitz W (1957) Cytology of blue algae. III. Studies on granular inclusions of Hormogonales. Arch Mikrobiol 25(4):333–351

    Article  Google Scholar 

  • Dudoladova MV, Kupriyanova EV, Markelova AG, Sinetova MP, Allakhverdiev SI, Pronina NA (2007) The thylakoid carbonic anhydrase associated with photosystem II is the component of inorganic carbon accumulating system in cells of halo-and alkaliphilic cyanobacterium Rhabdoderma lineare. Biochim Biophys Acta Bioenergetics 1767(6):616–623

    Article  Google Scholar 

  • Fukuzawa H, Suzuki E, Komukai Y, Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci 89(10):4437–4441

    Article  Google Scholar 

  • Fukuzawa T, Mendez EE, Hong JM (1990) Phase transition of an exciton system in GaAs coupled quantum wells. Phys Rev Lett 64(25):3066

    Article  Google Scholar 

  • Golecki JR (1979) Ultrastructure of cell wall and thylakoid membranes of the thermophilic cyanobacterium Synechococcus lividus under the influence of temperature shifts. Arch Microbiol 120(2):125–133

    Article  Google Scholar 

  • Gutu A, Nesbit AD, Alverson AJ, Palmer JD, Kehoe DM (2013) Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression. Proc Natl Acad Sci 110(40):16253–16258

    Article  Google Scholar 

  • Herranen M, Battchikova N, Zhang P, Graf A, Sirpià S, Paakkarinen V, Aro E-M (2004) Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol 134(1):470–481

    Article  Google Scholar 

  • Herrero A, Flores FG (2008) The cyanobacteria: molecular biology, genomics, and evolution. Caister Academic Press, Norfolk

    Google Scholar 

  • Higgins CF (2001) ABC transporters: physiology, structure and mechanism: An overview. Res Microbiol 152(3):205–210

    Article  Google Scholar 

  • Hoiczyk E, Baumeister W (1995) Envelope structure of four gliding filamentous cyanobacteria. J Bacteriol 177(9):2387–2395

    Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182(5):1191–1199

    Article  Google Scholar 

  • Huege J, Goetze J, Schwarz D, Bauwe H, Hagemann M, Kopka J (2011) Modulation of the major paths of carbon in photorespiratory mutants of Synechocystis. PLoS One 6(1):e16278

    Google Scholar 

  • Jorda J, Lopez D, Wheatley NM, Yeates TO (2013) Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria. Protein Sci 22(2):179–195

    Article  Google Scholar 

  • Kaneko Y, Danev R, Nagayama K, Nakamoto H (2006) Intact carboxysomes in a cyanobacterial cell visualized by Hilbert differential contrast transmission electron microscopy. J Bacteriol 188(2):805–808

    Article  Google Scholar 

  • Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309(5736):936–938

    Article  Google Scholar 

  • Kimber MS (2014) Carboxysomal carbonic anhydrases. Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Springer, Berlin, pp 89–103

    Google Scholar 

  • Kinney JN, Axen SD, Kerfeld CA (2011) Comparative analysis of carboxysome shell proteins. Photosynth Res 109(1–3):21–32

    Article  Google Scholar 

  • Klein MG, Zwart P, Bagby SC, Cai F, Chisholm SW, Heinhorst S, Cannon GC, Kerfeld CA (2009) Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J Mol Biol 392(2):319–333

    Article  Google Scholar 

  • Klughammer B, Sültemeyer D, Badger MR, Price GD (1999) The involvement of NAD (P) H dehydrogenase subunits, NdhD3 and NdhF3, in high-affinity CO2 uptake in Synechococcus sp. PCC7002 gives evidence for multiple NDH-1 complexes with specific roles in cyanobacteria. Mol Microbiol 32(6):1305–1315

    Article  Google Scholar 

  • Ko SBH, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ (2004) Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol 6(4):343–350

    Article  Google Scholar 

  • Kupriyanova E, Villarejo A, Markelova A, Gerasimenko L, Zavarzin G, Samuelsson Gr, Los DA, Pronina N (2007) Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes. Microbiology 153(4):1149–1156

    Article  Google Scholar 

  • Kupriyanova EV, Sinetova MA, Markelova AG, Allakhverdiev SI, Los DA, Pronina NA (2011) Extracellular β–class carbonic anhydrase of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. J Photochem Photobiol B 103(1):78–86

    Article  Google Scholar 

  • Lee RE (2008) Phycology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Long BM, Tucker L, Badger MR, Price GD (2010) Functional cyanobacterial β-carboxysomes have an absolute requirement for both long and short forms of the CcmM protein. Plant Physiol 153(1):285–293

    Article  Google Scholar 

  • Ludwig M, Suitemeyer D, Price GD (2000) Isolation of ccmKLMN genes from the marine cyanobacterium, Synechococcus sp. PCC7002 (Cyanophyceae), and evidence that CcmM is essential for carboxysome assembly. J Phycol 36(6):1109–1119

    Article  Google Scholar 

  • Maeda S, Badger MR, Price GD (2002) Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942. Mol Microbiol 43(2):425–435

    Google Scholar 

  • Maeda S, Price GD, Badger MR, Enomoto C, Omata T (2000) Bicarbonate binding activity of the CmpA protein of the cyanobacterium Synechococcus sp. strain PCC 7942 involved in active transport of bicarbonate. J Biol Chem 275(27):20551–20555

    Article  Google Scholar 

  • McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42(1):95–117

    Google Scholar 

  • McKay RML, Gibbs SP, Espie GS (1993) Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of RuBisCO and the mode of inorganic carbon transport in cells of the cyanobacterium synechococcus UTEX 625. Arch Microbial 159(1):21–29

    Google Scholar 

  • Menon BB, Dou Z, Heinhorst S, Shively JM, Cannon GC (2008) Halothiobacillus neapolitanus carboxysomes sequester heterologous and chimeric RuBisCO species. PLoS ONE 3(10):e3570

    Article  Google Scholar 

  • Nordlund TM (2011) Quantitative understanding of biosystems: an introduction to biophysics. Taylor & Francis, London

    Google Scholar 

  • Ogawa T, Kaplan A (2003) Inorganic carbon acquisition systems in cyanobacteria. Photosynth Res 77(2–3):105–115

    Article  Google Scholar 

  • Ogawa T, Marco E, Orus MI (1994) A gene (ccmA) required for carboxysome formation in the cyanobacterium Synechocystis sp. strain PCC6803. J Bacteriol 176(8):2374–2378

    Google Scholar 

  • Ohkawa H, Price GD, Badger MR, Ogawa T (2000) Mutation of ndh genes leads to inhibition of CO2 uptake rather than HCO -3 uptake in Synechocystis sp. strain PCC 6803. J Bacteriol 182(9):2591–2596

    Article  Google Scholar 

  • Omata T, Ogawa T (1986) Biosynthesis of a 42-kD polypeptide in the cytoplasmic membrane of the cyanobacterium Anacystis nidulans strain R2 during adaptation to low CO2 concentration. Plant Physiol 80(2):525–530

    Article  Google Scholar 

  • Omata T, Price GD, Badger MR, Okamura M, Gohta S, Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci 96(23):13571–13576

    Article  Google Scholar 

  • Omata T, Takahashi Y, Yamaguchi O, Nishimura T (2002) Structure, function and regulation of the cyanobacterial high-affinity bicarbonate transporter, BCT1. Funct Plant Biol 29(3):151–159

    Article  Google Scholar 

  • Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J (2003) The genome of a motile marine Synechococcus. Nature 424(6952):1037–1042

    Article  Google Scholar 

  • Pena KL, Castel SE, de Araujo C, Espie GS, Kimber MS (2010) Structural basis of the oxidative activation of the carboxysomal β-carbonic anhydrase, CcmM. Proc Natl Acad Sci 107(6):2455–2460

    Article  Google Scholar 

  • Price GD (2011) Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynth Res 109(1–3):47–57

    Article  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59(7):1441–1461

    Article  Google Scholar 

  • Price GD, Coleman JR, Badger MR (1992) Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100(2):784–793

    Article  Google Scholar 

  • Price GD, Maeda SI, Omata T, Badger MR (2002) Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942. Funct Plant Biol 29(3):131–149

    Google Scholar 

  • Price GD, Pengelly JJL, Forster B, Du J, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR (2013) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 64(3):753–768

    Article  Google Scholar 

  • Price GD, Sültemeyer D, Klughammer B, Ludwig M, Badger MR (1998) The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins, and recent advances. Can J Bot 76(6):973–1002

    Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci 101(52):18228–18233

    Article  Google Scholar 

  • Prommeenate P, Lennon AM, Markert C, Hippler M, Nixon PJ (2004) Subunit Composition of NDH-1 Complexes of Synechocystis sp. PCC 6803 identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. J Biol Chem 279(27):28165–28173

    Article  Google Scholar 

  • Rae BD, Long BM, Badger MR, Price GD (2012) Structural determinants of the outer shell of β-carboxysomes in Synechococcus elongatus PCC 7942: roles for Ccm K2, K3–K4, CcmO, and CcmL. PLoS ONE 7(8):e43871

    Article  Google Scholar 

  • Rae BD, Long BM, Badger MR, Price GD (2013a) Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 77(3):357–379

    Article  Google Scholar 

  • Rae BD, Long BM, Whitehead LF, Forster B, Badger MR, Price GD (2013b) Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation. J Mol Microbiol Biotechnol 23(4–5):300–307

    Article  Google Scholar 

  • Rahman MA, Sinha S, Sachan S, Kumar G, Singh SK, Sundaram S (2014) Analysis of proteins involved in the production of MAA’s in two Cyanobacteria synechocystis PCC 6803 and Anabaena cylindrica. Bioinformation 10(7):449–453

    Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455(7216):1101–1104

    Article  Google Scholar 

  • Riding R (2006) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology 4(4):299–316

    Google Scholar 

  • Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68(3):1180–1191

    Article  Google Scholar 

  • Samborska B, Kimber MS (2012) A dodecameric CcmK2 structure suggests β-carboxysomal shell facets have a double-layered organization. Structure 20(8):1353–1362

    Article  Google Scholar 

  • Sandrini G, Matthijs HCP, Verspagen JMH, Muyzer G, Huisman J (2014) Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. ISME J 8:589–600. doi:10.1038/ismej.2013.179

    Article  Google Scholar 

  • Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO et al (2006) The structure of β-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 281(11):7546–7555

    Google Scholar 

  • Seckbach J, Oren A, Stan-Lotter H (2013) Polyextremophiles: life under multiple forms of stress. Springer, Berlin

    Book  Google Scholar 

  • Shelden MC, Howitt SM, Price GD (2010) Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family. Mol Membr Biol 27(1):12–22

    Article  Google Scholar 

  • Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J Biol Chem 277(21):18658–18664

    Article  Google Scholar 

  • Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A, Ogawa T (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci 98(20):11789–11794

    Article  Google Scholar 

  • Shively JM, Ball F, Brown DH, Saunders RE (1973) Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182(4112):584–586

    Article  Google Scholar 

  • So AKC, Espie GS (1998) Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Plant Mol Biol 37(2):205–215

    Article  Google Scholar 

  • So AKC, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. J Bacteriol 186(3):623–630

    Article  Google Scholar 

  • So AKC, Van Spall HGC, Coleman JR, Espie GS (1998) Catalytic exchange of 18O from 13C18O-labelled CO2 by wild-type cells and ecaA, ecaB, and ccaA mutants of the cyanobacteria Synechococcus PCC7942 and Synechocystis PCC6803. Can J Bot 76(6):1153–1160

    Article  Google Scholar 

  • Soltes-Rak E, Kushner DJ, Williams DD, Coleman JR (1993) Effect of promoter modification on mosquitocidal cryIVB gene expression in Synechococcus sp. strain PCC 7942. Appl Environ Microbiol 59(8):2404–2410

    Google Scholar 

  • Steinle A, Oppermann-Sanio FB, Reichelt R, Steinbachel A (2008) Synthesis and accumulation of cyanophycin in transgenic strains of Saccharomyces cerevisiae. Appl Environ Microbiol 74(11):3410–3418

    Article  Google Scholar 

  • Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS (2008) Distinct form I, II, III, and IV RuBisCO proteins from the three kingdoms of life provide clues about RuBisCO evolution and structure/function relationships. J Exp Bot 59(7):1515–1524

    Article  Google Scholar 

  • Wang H-L, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279(7):5739–5751

    Article  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

    Article  Google Scholar 

  • Whitehead AN (2013) The concept of nature. Courier Dover Publications

    Google Scholar 

  • Whitehead L, Long B, Price D, Badger MR (2014) Comparing the in vivo function of α- and β-carboxysomes in two model cyanobacteria. Plant Physiol 114.237941

    Google Scholar 

  • Woodger FJ, Badger MR, Price GD (2005) Sensing of inorganic carbon limitation in Synechococcus PCC7942 is correlated with the size of the internal inorganic carbon pool and involves oxygen. Plant Physiol 139(4):1959–1969

    Google Scholar 

  • Xu M, Bernat Gb, Singh A, Mi H, Ragner M, Pakrasi HB, Ogawa T (2008) Properties of mutants of Synechocystis sp strain PCC 6803 lacking inorganic carbon sequestration systems. Plant Cell Physiol 49(11):1672–1677

    Article  Google Scholar 

  • Yu J-W, Price GD, Song L, Badger MR (1992) Isolation of a putative carboxysomal carbonic anhydrase gene from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100(2):794–800

    Article  Google Scholar 

  • Zarzycki J, Axen SD, Kinney JN, Kerfeld CA (2013) Cyanobacterial-based approaches to improving photosynthesis in plants. J Exp Bot 64(3):787–798

    Article  Google Scholar 

  • Zhang P, Battchikova N, Jansen T, Appel J, Ogawa T, Aro E-M (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp PCC 6803. Plant Cell Online 16(12):3326–3340

    Article  Google Scholar 

  • Zhang P, Battchikova N, Paakkarinen V, Katoh H, Iwai M, Ikeuchi M, Pakrasi H, Ogawa T, Aro E (2005) Isolation, subunit composition and interaction of the NDH-1 complexes from Thermosynechococcus elongatus BP-1. Biochem J 390:513–520

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Singh, S.K., Sundaram, S., Kishor, K. (2014). Carbon-Concentrating Mechanism of Cyanobacteria. In: Photosynthetic Microorganisms. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-09123-5_3

Download citation

Publish with us

Policies and ethics