Skip to main content

Carbon-Concentrating Mechanism

  • Chapter
  • First Online:
Photosynthetic Microorganisms

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Every living molecular machine on planet is constructed across a middle staging of organic carbon which locked in extremely oxidized structures, such as carbonate minerals (calcite, aragonite, etc.) and CO2 gas. The photosynthetic organisms are capable to unlock these oxidized carbon structures and transform them into more organic forms via a process called “photosynthesis.” Among photosynthetic organisms, photosynthetic microorganisms play a significant role in the formation of organic biomass and oxygenic environment on Earth. However, majority of these microorganisms undertake photosynthesis in an aquatic environment of ocean where they face a number of unique restraints regarding the efficient operation of carbon fixation through photosynthesis. Carbon-concentrating mechanism (CCM) is a remarkable adaptation, evolved to maximize photosynthetic efficiency of many photosynthetic organisms in low-COlevels of aqueous environment. This chapter provides in-depth state-of-the-art information of CCM machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alber BE, Ferry JG (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Natl Acad Sci 91(15):6909–6913

    Google Scholar 

  • Andersson I (2008) Catalysis and regulation in RuBisCO. J Exp Bot 59(7):1555–1568

    Google Scholar 

  • Andersson I, Backlund A (2008) Structure and function of RuBisCO. Plant Physiol Biochem 46(3):275–291

    Google Scholar 

  • Andersson I, Knight S, Schneider G, Lindqvist Y, Lundqvist T, Branden C-I, Lorimer GH (1989) Crystal structure of the active site of ribulose-bisphosphate carboxylase. Nature 337:229–234

    Google Scholar 

  • Aspatwar A, Tolvanen MEE, Parkkila S (2010) Phylogeny and expression of carbonic anhydrase-related proteins. BMC Mol Biol 11(1):25

    Google Scholar 

  • Badger MR, Bek EJ (2008) Multiple RuBisCO forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot 59(7):1525–1541

    Google Scholar 

  • Badger MR, Kaplan A, Berry JA (1980) Internal inorganic carbon pool of Chlamydomonas reinhardtii: Evidence for a carbon dioxide-concentrating mechanism. Plant Physiol 66(3):407–413

    Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Biol 45(1):369–392

    Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54(383):609–622

    Google Scholar 

  • Barber J (2003) Photosystem II: the engine of life. Q Rev Biophys 36(01):71–89

    Google Scholar 

  • Barsanti L, Gualtieri P (2014) Algae: anatomy, biochemistry, and biotechnology. CRC press, Boca Raton

    Google Scholar 

  • Bartlett GJ, Porter CT, Borkakoti N, Thornton JM (2002) Analysis of catalytic residues in enzyme active sites. J Mol Biol 324(1):105–121

    Google Scholar 

  • Berg JM, Tymoczko J, Stryer L (2002) Biochemistry making a fast reaction faster: carbonic anhydrases

    Google Scholar 

  • Björn LO (2008) The evolution of photosynthesis and its environmental impact. In: Photobiology. Springer, pp 255–287

    Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis. Wiley

    Google Scholar 

  • Boone CD, Habibzadegan A, Gill S, McKenna R (2013) Carbonic anhydrases and their biotechnological applications. Biomolecules 3(3):553–562

    Google Scholar 

  • Bracher A, Starling-Windhof A, Hartl FU, Hayer-Hartl M (2011) Crystal structure of a chaperone-bound assembly intermediate of form I RuBisCO. Nat Struct Mol Biol 18(8):875–880

    Google Scholar 

  • Burnell JN, Gibbs MJ, Mason JG (1990) Spinach chloroplastic carbonic anhydrase nucleotide sequence analysis of cDNA. Plant Physiol 92(1):37–40

    Google Scholar 

  • Calvin M, Bassham JA, Benson AA, Lynch V, Ouellet C, Schou L, Stepka Wt, Tolbert NE (1950) The path of carbon in photosynthesis. X. Carbon dioxide assimilation in plants. Lawrence Berkeley National Laboratory

    Google Scholar 

  • Carrae-Mlouka A, Maejean A, Quillardet P, Ashida H, Saito Y, Yokota A, Callebaut I, Sekowska A, Dittmann E, Bouchier C (2006) A new RuBisCO-like protein coexists with a photosynthetic RuBisCO in the planktonic cyanobacteria Microcystis. J Biol Chem 281(34):24462–24471

    Google Scholar 

  • Chollet R, Vidal J, O’Leary MH (1996) Phospho enol pyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Biol 47(1):273–298

    Google Scholar 

  • Clegg MT, Cummings MP, Durbin ML (1997) The evolution of plant nuclear genes. Proc Natl Acad Sci 94(15):7791–7798

    Google Scholar 

  • Cot SSW, So AKC, Espie GS (2008) A multiprotein bicarbonate dehydration complex essential to carboxysome function in cyanobacteria. J Bacteriol 190(3):936–945

    Google Scholar 

  • Covarrubias AS, Bergfors T, Jones TA, Hogbom M (2006) Structural mechanics of the pH-dependent activity of beta-carbonic anhydrase from Mycobacterium tuberculosis. J Biol Chem 281(8):4993–4999

    Google Scholar 

  • Daley SME, Kappell AD, Carrick MJ, Burnap RL (2012) Regulation of the cyanobacterial CO2-concentrating mechanism involves internal sensing of NADP+ and α-ketogutarate levels by transcription factor CcmR. PLoS ONE 7(7):e41286

    Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouza P, Worden AZ, Robbens S, Partensky Fdr, Degroeve S, Echeynia S, Cooke R (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Nat Acad Sci 103(31):11647–11652

    Google Scholar 

  • Donaldson TL, Quinn JA (1974) Kinetic constants determined from membrane transport measurements: carbonic anhydrase activity at high concentrations. Proc Natl Acad Sci 71(12):4995–4999

    Google Scholar 

  • Ducat DC, Silver PA (2012) Improving carbon fixation pathways. Curr Opin Chem Biol 16(3):337–344

    Google Scholar 

  • Dufossae L, Galaup P, Yaron A, Arad SM, Blanc P, Chidambara Murthy KN, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16(9):389–406

    Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4(11):241–244

    Google Scholar 

  • Emlyn-Jones D, Woodger FJ, Price GD, Whitney SM (2006) RbcX can function as a RubBisCO chaperonin, but is non-essential in Synechococcus PCC7942. Plant Cell Physiol 47(12):1630–1640

    Google Scholar 

  • Eriksson AE, Jones TA, Liljas A (1988) Refined structure of human carbonic anhydrase II at 2.0 Å resolution. Proteins Struct Funct Bioinf 4(4):274–282

    Google Scholar 

  • Eriksson M, Karlsson J, Ramazanov Z, Gardestrom P, Samuelsson G (1996) Discovery of an algal mitochondrial carbonic anhydrase: molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proc Natl Acad Sci 93(21):12031–12034

    Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, New Jersey

    Google Scholar 

  • Fawcett TW, Volokita M, Bartlett SG (1990) Spinach carbonic anhydrase primary structure deduced from the sequence of a cDNA clone. J Biol Chem 265(10):5414–5417

    Google Scholar 

  • Ferguson JKW, Lewis L, Smith J (1937) The distribution of carbonic anhydrase in certain marine invertebrates. J Cell Comp Physiol 10(3):395–400

    Google Scholar 

  • Flores-Paerez Ã, Jarvis P (2013) Molecular chaperone involvement in chloroplast protein import. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1833(2):332–340

    Google Scholar 

  • Fukuzawa H, Fujiwara S, Yamamoto Y, Dionisio-Sese ML, Miyachi S (1990) cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc Natl Acad Sci 87(11):4383–4387

    Google Scholar 

  • Fukuzawa H, Suzuki E, Komukai Y, Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci 89(10):4437–4441

    Google Scholar 

  • Furbank RT, Taylor WC (1995) Regulation of photosynthesis in C3 and C4 plants: a molecular approach. Plant Cell 7(7):797

    Google Scholar 

  • Gilbert BC, Murphy DM, Chechik V (2012) Electron paramagnetic resonance. Royal Society of Chemistry, UK

    Google Scholar 

  • Green B, Parson WW (2003) Light-harvesting antennas in photosynthesis. Springer, New York

    Google Scholar 

  • Haimovichae Dayan M, Garfinkel N, Ewe D, Marcus Y, Gruber A, Wagner H, Kroth PG, Kaplan A (2013) The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. New Phytol 197(1):177–185

    Google Scholar 

  • Hanson TE, Tabita FR (2001) A ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci 98(8):4397–4402

    Google Scholar 

  • Hatch MD, Slack CR (1966) Photosynthesis by sugar-cane leaves. Biochem J 101:103–111

    Google Scholar 

  • Heinhorst S, Williams EB, Cai F, Murin CD, Shively JM, Cannon GC (2006) Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus. J Bacteriol 188(23):8087–8094

    Google Scholar 

  • Hewett-Emmett D, Tashian RE (1996) Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Mol Phylogenet Evol 5(1):50–77

    Google Scholar 

  • Hiltonen T, Björkbacka H, Forsman C, Clarke AK, Samuelsson G (1998) Intracellular β-carbonic anhydrase of the unicellular green alga Coccomyxa cloning of the cDNA and characterization of the functional enzyme overexpressed in Escherichia coli. Plant Physiol 117(4):1341–1349

    Google Scholar 

  • Huang S, Hainzl T, Grundstrom C, Forsman C, Samuelsson G, Sauer-Eriksson AE (2011) Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide. PLoS ONE 6(12):e28458

    Google Scholar 

  • Iverson TM, Alber BE, Kisker C, Ferry JG, Rees DC (2000) A closer look at the active site of γ-class carbonic anhydrases: high-resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39(31):9222–9231

    Google Scholar 

  • Kanth BK, Min K, Kumari S, Jeon H, Jin ES, Lee J, Pack SP (2012) Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO2 sequestration application. Appl Biochem Biotechnol 167(8):2341–2356

    Google Scholar 

  • Karkehabadi S (2005) Structure-function studies of ribulose-1, 5-bisphosphate carboxylase/oxygenase: activation, thermostability, and CO2/O2 specificity, vol 2005

    Google Scholar 

  • Keeley JE (1998) C4 photosynthetic modifications in the evolutionary transition from land to water in aquatic grasses. Oecologia 116(1–2):85–97

    Google Scholar 

  • Keeley JE, Sternberg LO, Deniro MJ (1986) The use of stable isotopes in the study of photosynthesis in freshwater plants. Aquat Bot 26:213–223

    Google Scholar 

  • Kennedy RA (1976) Photorespiration in C3 and C4 plant tissue cultures significance of Kranz Anatomy to low photorespiration in C4 Plants. Plant Physiol 58(4):573–575

    Google Scholar 

  • Kimber MS, Pai EF (2000) The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases. EMBO J 19(7):1407–1418

    Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Kisker C, Schindelin H, Alber BE, Ferry JG, Rees DC (1996) A left-hand beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. The EMBO J 15(10):2323

    Google Scholar 

  • Kremer BP, Kuppers U (1977) Carboxylating enzymes and pathway of photosynthetic carbon assimilation in different marine algae-Evidence for the C4-pathway? Planta 133(2):191–196

    Google Scholar 

  • Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM (2008) Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem Rev 108(3):946–1051

    Google Scholar 

  • Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372(3):774–797

    Google Scholar 

  • Kröncke K-D, Klotz L-O (2009) Zinc fingers as biologic redox switches? Antioxid Redox Signal 11(5):1015–1027

    Google Scholar 

  • Kumar S, Singh V, Tiwari M (2007) Quantitative structure activity relationship studies of sulfamide derivatives as carbonic anhydrase inhibitor: as antiglaucoma agents. Med Chem 3(4):379–386

    Google Scholar 

  • Laing WA, Ogren WL, Hageman RH (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2, and ribulose 1, 5-diphosphate carboxylase. Plant Physiol 54(5):678–685

    Google Scholar 

  • Lapointe M, MacKenzie TDB, Morse D (2008) An external delta-carbonic anhydrase in a free-living marine dinoflagellate may circumvent diffusion-limited carbon acquisition. Plant Physiol 147(3):1427–1436

    Google Scholar 

  • Larimer FW, Soper TS (1993) Overproduction of Anabaena 7120 ribulose-bisphosphate carboxylase/oxygenase in Escherichia coli. Gene 126(1):85–92

    Google Scholar 

  • Liljas A, Kannan KK, Bergsten PC, Waara I, Fridborg K, Strandberg B, Carlbom U, Järup L, Lagren S, Petef M (1972) Crystal structure of human carbonic anhydrase C. Nature 235(57):131–137

    Google Scholar 

  • Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU (2010) Coupled chaperone action in folding and assembly of hexadecameric RubisCO. Nature 463(7278):197–202

    Google Scholar 

  • McGrath JM, Long SP (2014) Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol 164(4):2247–2261

    Google Scholar 

  • Mitsuhashi S, Mizushima T, Yamashita E, Yamamoto M, Kumasaka T, Moriyama H, Ueki T, Miyachi S, Tsukihara T (2000) X-ray structure of beta-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO2 hydration. J Biol Chem 275(8):5521–5526

    Google Scholar 

  • Morita K, Hatanaka T, Misoo S, Fukayama H (2014) Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of RubisCO in rice. Plant Physiol 164(1):69–79

    Google Scholar 

  • Moroney JV, Ma Y, Frey WD, Fusilier KA, Pham TT, Simms TA, DiMario RJ, Yang J, Mukherjee B (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth Res 109(1–3):133–149

    Google Scholar 

  • Moroney JV, Ynalvez RA (2007) Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot Cell 6(8):1251–1259

    Google Scholar 

  • Mukherjee B (2013) Investigation of the role of putative inorganic carbon transporters in the carbon dioxide concentrating mechanisms of Chlamydomonas reinhardtii. Calcutta University, Kolkata

    Google Scholar 

  • Newman J, Gutteridge S (1993) The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase-activated quaternary complex at 2.2-A resolution. J Biol Chem 268(34):25876–25886

    Google Scholar 

  • Nishitani Y, Yoshida S, Fujihashi M, Kitagawa K, Doi T, Atomi H, Imanaka T, Miki K (2010) Structure-based catalytic optimization of a type III RubisCO from a hyperthermophile. J Biol Chem 285(50):39339–39347

    Google Scholar 

  • Ogren WL (1984) Photorespiration: pathways, regulation, and modification. Annu Rev Plant Physiol 35(1):415–442

    Google Scholar 

  • Onizuka T, Endo S, Akiyama H, Kanai S, Hirano M, Yokota A, Tanaka S, Miyasaka H (2004) The rbcX gene product promotes the production and assembly of ribulose-1, 5-bisphosphate carboxylase/oxygenase of Synechococcus sp. PCC7002 in Escherichia coli. Plant Cell Physiol 45(10):1390–1395

    Google Scholar 

  • Parkin G (2004) Synthetic analogues relevant to the structure and function of zinc enzymes. Chem Rev 104(2):699–768

    Google Scholar 

  • Pastorek J, Pastorekova S, Callebaut I, Mornon JP, Zelník V, Opavska R, Zat’ovicová M, Liao S, Portetelle D, Stanbridge EJ (1994) Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene 9(10):2877–2888

    Google Scholar 

  • Peña KL, Castel SE, de Araujo C, Espie GS, Kimber MS (2010) Structural basis of the oxidative activation of the carboxysomal gamma-carbonic anhydrase, CcmM. Proc Natl Acad Sci 107(6):2455–2460

    Google Scholar 

  • Portis AR Jr (1992) Regulation of ribulose 1, 5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Biol 43(1):415–437

    Google Scholar 

  • Portis AR Jr (2003) RubisCO activase “RubisCO’s catalytic chaperone”. Photosynth Res 75(1):11–27

    Google Scholar 

  • Portis AR Jr, Parry MAJ (2007) Discoveries in RuBisCO (Ribulose 1, 5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynth Res 94(1):121–143

    Google Scholar 

  • Price GD (2011) Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynth Res 109(1–3):47–57

    Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59(7):1441–1461

    Google Scholar 

  • Rae BD, Long BM, Badger MR, Price GD (2013) Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 77(3):357–379

    Google Scholar 

  • Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155(1):36–42

    Google Scholar 

  • Rao SK, Fukayama H, Reiskind JB, Miyao M, Bowes G (2006) Identification of C4 responsive genes in the facultative C4 plant Hydrilla verticillata. Photosynth Res 88(2):173–183

    Google Scholar 

  • Raven JA (1997) CO2-concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant Cell Environ 20(2):147–154

    Google Scholar 

  • Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc B Biol Sci 363(1504):2641–2650

    Google Scholar 

  • Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann Rev Mar Sci 3:291–315

    Google Scholar 

  • Reiskind JB, Bowes G (1991) The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc Natl Acad Sci 88(7):2883–2887

    Google Scholar 

  • Reiskind JB, Seamon PT, Bowes G (1988) Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol 87(3):686–692

    Google Scholar 

  • Roberts SB, Lane TW, Morel FoMM (1997) Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae) 1. J Phycol 33(5):845–850

    Google Scholar 

  • Rudi K, Skulberg OM, Jakobsen KS (1998) Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 180(13):3453–3461

    Google Scholar 

  • Sage RF (2002) Variation in the kcat of RuBisCO in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot 53(369):609–620

    Google Scholar 

  • Saschenbrecker S (2007) Folding and assembly of RuBisCO. Ph.D. thesis, lmu

    Google Scholar 

  • Saschenbrecker S, Bracher A, Rao KV, Rao BV, Hartl FU, Hayer-Hartl M (2007) Structure and function of RbcX, an assembly chaperone for hexadecameric RuBisCO. Cell 129(6):1189–1200

    Google Scholar 

  • Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, Kerfeld CA (2006) The structure of β-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 281(11):7546–7555

    Google Scholar 

  • Schlicker C, Hall RA, Vullo D, Middelhaufe S, Gertz M, Supuran CT, Mahlschlegel FA, Steegborn C (2009) Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans. J Mol Biol 385(4):1207–1220

    Google Scholar 

  • Schneider G, Lindqvist Y, Lundqvist T (1990) Crystallographic refinement and structure of ribulose-1, 5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 Å resolution. J Mol Biol 211(4):989–1008

    Google Scholar 

  • Scholes GD, Fleming GR (2005) Energy transfer and photosynthetic light harvesting. Adv Chem Phys 132:57–130

    Google Scholar 

  • Schuster G, Owens GC, Cohen Y, Ohad I (1984) Thylakoid polypeptide composition and light-independent phosphorylation of the chlorophyll a, b-protein in Prochloron, a prokaryote exhibiting oxygenic photosynthesis. Biochimica et Biophysica Acta (BBA)-Bioenerg 767(3):596–605

    Google Scholar 

  • Shiba T, Simidu U, Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38(1):43–45

    Google Scholar 

  • Smith KS, Ferry JG (1999) A plant-type (β-class) carbonic anhydrase in the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum. J Bacteriol 181(20):6247–6253

    Google Scholar 

  • Smith MR, Mah RA (1978) Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36(6):870–879

    Google Scholar 

  • So AKC, Espie GS (2005) Cyanobacterial carbonic anhydrases. Can J Bot 83(7):721–734

    Google Scholar 

  • So AKC, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (ε-class) is a component of the carboxysome shell. J Bacteriol 186(3):623–630

    Google Scholar 

  • Soltes-Rak E, Mulligan ME, Coleman JR (1997) Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J Bacteriol 179(3):769–774

    Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) RuBisCO: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53(1):449–475

    Google Scholar 

  • Sugawara H, Yamamoto H, Shibata N, Inoue T, Okada S, Miyake C, Yokota A, Kai Y (1999) Crystal structure of carboxylase reaction-oriented ribulose 1, 5-bisphosphate carboxylase/oxygenase from a thermophilic red alga, Galdieria partita. J Biol Chem 274(22):15655–15661

    Google Scholar 

  • Sugiyama T, Mizuno M, Hayashi M (1984) Partitioning of nitrogen among ribulose-1, 5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, and pyruvate orthophosphate dikinase as related to biomass productivity in maize seedlings. Plant Physiol 75(3):665–669

    Google Scholar 

  • Supuran CT (2011) Carbonic anhydrase inhibition with natural products: novel chemotypes and inhibition mechanisms. Mol Divers 15(2):305–16. doi:101007/s11030-010-9271-4 (Epub 2010 Aug 28)

  • Supuran CT, Scozzafava A (2007) Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 15(13):4336–4350

    Google Scholar 

  • Tabita FR (1999) Microbial ribulose 1, 5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60(1):1–28

    Google Scholar 

  • Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S (2007) Function, structure, and evolution of the RuBisCO-like proteins and their RuBisCO homologs. Microbiol Mol Biol Rev 71(4):576–599

    Google Scholar 

  • Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS (2008) Distinct form I, II, III, and IV RuBisCO proteins from the three kingdoms of life provide clues about RuBisCO evolution and structure/function relationships. J Exp Bot 59(7):1515–1524

    Google Scholar 

  • Taylor TC, Andersson I (1997) The structure of the complex between RuBisCO and its natural substrate ribulose 1, 5-bisphosphate. J Mol Biol 265(4):432–444

    Google Scholar 

  • Tetu SG, Tanz SK, Vella N, Burnell JN, Ludwig M (2007) The Flaveria bidentis β-carbonic anhydrase gene family encodes cytosolic and chloroplastic isoforms demonstrating distinct organ-specific expression patterns. Plant Physiol 144(3):1316–1327

    Google Scholar 

  • Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276(52):48615–48618

    Google Scholar 

  • Tsuzuki M, Miyachi S (1989) The function of carbonic anhydrase in aquatic photosynthesis. Aquat Bot 34(1):85–104

    Google Scholar 

  • Van Gorkom HJ (1985) Electron transfer in photosystem II. Photosynth Res 6(2):97–112

    Google Scholar 

  • van Lun M, Hub JS, van der Spoel D, Andersson I (2014) CO2 and O2 distribution in RuBisCO Suggests the small subunit functions as a CO2 reservoir. J Am Chem Soc 136(8):3165–3171

    Google Scholar 

  • van Ooijen G, Knox K, Kis K, Bouget F-Y, Millar AJ (2012) Genomic transformation of the picoeukaryote Ostreococcus tauri. J Vis Exp JoVE (65)

    Google Scholar 

  • Vega MC, Lorentzen E, Linden A, Wilmanns M (2003) Evolutionary markers in the (β/α)8-barrel fold. Curr Opin Chem Biol 7(6):694–701

    Google Scholar 

  • Walker JCG (1985) Carbon dioxide on the early Earth. Orig Life Evol Biosph 16(2):117–127

    Google Scholar 

  • Wang Q, Fristedt R, Yu X, Chen Z, Liu H, Lee Y, Guo H, Merchant SS, Lin C (2012) The γ-carbonic anhydrase subcomplex of mitochondrial complex I is essential for development and important for photomorphogenesis of Arabidopsis. Plant Physiol 160(3):1373–1383

    Google Scholar 

  • Wang X, Wu S, Xu D, Xie D, Guo H (2011) Inhibitor and substrate binding by angiotensin-converting enzyme: quantum mechanical/molecular mechanical molecular dynamics studies. J Chem Inf Model 23; 51(5):1074–1082. doi:101021/ci200083f (Epub 2011 Apr 26)

  • Warlick B (2013) Functional discovery and promiscuity in the RuBisCO superfamily. University of Illinois at Urbana-Champaign, USA

    Google Scholar 

  • Whitmarsh J (1999) The photosynthetic process. In: Concepts in photobiology. Springer, pp 11–51

    Google Scholar 

  • Whitney SM, Andrews TJ (2001) The gene for the ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into RuBisCO. Plant Cell Online 13(1):193–205

    Google Scholar 

  • Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, RuBisCO. Plant physiol 155(1):27–35

    Google Scholar 

  • Windhof A (2011) RuBisCO folding and oligomeric assembly: detailed analysis of an assembly intermediate. lmu

    Google Scholar 

  • Xu J, Fan X, Zhang X, Xu D, Mou S, Cao S, Zheng Z, Miao J, Ye N (2012) Evidence of coexistence of C3 and C4 photosynthetic pathways in a green-tide-forming alga, Ulva prolifera. PloS one 7(5):e37438

    Google Scholar 

  • Yurkov V, Beatty JT (1998) Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the juan de fuca ridge in the pacific ocean. Appl Environ Microbiol 64(1):337–341

    Google Scholar 

  • Zastrow ML, Pecoraro VL (2013) Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes. J Am Chem Soc 135(15):5895–5903

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Singh, S.K., Sundaram, S., Kishor, K. (2014). Carbon-Concentrating Mechanism. In: Photosynthetic Microorganisms. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-09123-5_2

Download citation

Publish with us

Policies and ethics